
 
 

 

PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW 

SECRET KEY RECONCILIATION PROTOCOL 

 

THESIS 

 

Kevin C. Lustic, Civilian, USAF 

AFIT/GCO/ENG11-08 

 

DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 

  



 

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government.  This material is declared a work of the U.S. Government and is not 

subject to copyright protection in the United States.  



 

 

 

AFIT/GCO/ENG11-08 

PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW SECRET 

KEY RECONCILIATION PROTOCOL 

 

THESIS 

 

Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

 

Kevin C. Lustic, BS 

Civilian, USAF 

 

June 2011 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 

  



 

 

 

AFIT/GCO/ENG11-08 

 

 

 

PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW SECRET 

KEY RECONCILIATION PROTOCOL 

 

 

Kevin C. Lustic, BS 

Civilian, USAF 

 

 

 

 

 

 

 

 

Approved: 

 

 

 

 

                                     /signed/                                     20 May 2011   

 Lt Col Jeffrey W. Humphries, PhD (Chairman)  Date 

 

 

 

 

                                     /signed/                                     20 May 2011   

 Michael R. Grimaila, PhD, CISM, CISSP (Member)  Date



iv 

 

 

AFIT/GCO/ENG11-08 

Abstract 

 

 

Currently, private communications in public and government sectors rely on 

methods of cryptographic key distribution that will likely be rendered obsolete the 

moment a full-scale quantum computer is realized, or efficient classical methods of 

factoring are discovered.  There are alternative methods for distributing secret key 

material in a “post-quantum” era.  One example of a system capable of securely 

distributing cryptographic key material, known as Quantum Key Distribution (QKD), is 

secure against quantum factorization techniques as its security rests on generally accepted 

laws of quantum physics.  QKD protocols typically include a phase called “Error 

Reconciliation”, a clear-text classical-channel discussion between legitimate parties of a 

QKD protocol by which errors introduced in the quantum channel are corrected and the 

legitimate parties ensure they share identical key material.  This work improves one such 

reconciliation protocol, called Winnow, by examining block-size choices for Winnow and 

thus increasing QKD key rate.  Block sizes are chosen to maximize the probability that 

each block contains exactly one error.  Further analyses of Winnow are provided to 

characterize the effects of different error distributions on protocol operation and shed 

light on the time and communication complexities of the Winnow secret key 

reconciliation protocol. 
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Conventions Used in This Paper 

 

 The terms public channel and classical channel are used synonymously to refer to 

an authenticated classical link between Alice and Bob used to carry out sifting, 

reconciliation, and privacy amplification.  The term raw key refers to the random string of 

bits produced by Alice and sent to Bob over the quantum channel; the term sifted key 

refers to the string of key bits that are the outcome of the sifting process; the term 

reconciled key refers to the outcome of the reconciliation process; and the term final key 

refers to the outcome of privacy amplification. 

 The terms estimated error rate and error estimate are used synonymously, and in 

general differ from error rate or actual error rate. 
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PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE WINNOW SECRET 

KEY RECONCILIATION PROTOCOL 

 

 

 

I. Introduction 

 

Cryptography is the art and science of protecting information by generating a new 

message, or ciphertext, such that interception of the ciphertext reveals minimal useful 

information to an adversary.  Cryptography exists in many forms tailored to many 

applications including, but not limited to, protection of information in transit and in 

storage, proof of identity, and validation of information.  For some applications, such as 

the secure storage of passwords on a web server or responses in a zero-knowledge proof 

authentication schemes, original information need not be recoverable by any party.  For 

many others, namely those protocols designed to protect information communicated 

between multiple parties, the cryptographic scheme used to encipher data must facilitate 

the extraction of a meaningful plaintext. 

There are countless cryptographic protocols available today that facilitate the 

confidential transmission of information.  One type of protocol called symmetric-key 

encryption has many advantages such as speed of operation, relatively low power 

consumption, and in some cases an information-theoretic basis for security.  One major 

shortfall of symmetric-key encryption is, as its name implies, that the sending and 
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receiving parties must both possess a copy of preshared key material in order to exchange 

meaningful messages.  This issue may not seem critical, but one can imagine a scenario 

where sending and receiving parties wish to communicate securely but have not met prior 

to the information exchange, and hence share no private data for use as a key.  For 

example, for transactions that take place over the Internet this is a major issue.  The 

problem of establishing secret preshared keys for use in a symmetric cipher is commonly 

referred to as key distribution.  To solve the problem of key distribution, symmetric-key 

protocols are often used in conjunction with asymmetric-key protocols, in which the 

sender and receiver do not share a common key but can still transmit a message securely.  

The security of asymmetric-key protocols in their current form is not provable.  Instead 

these proofs typically rest on the limitations of modern computational resources.  They 

are also generally inefficient for transmitting large messages due to time and/or energy 

constraints.  However, such protocols are useful in their current form and context for 

sharing a relatively small key that two parties can use with a symmetric-key protocol for 

secure communications. 

In the 1940‟s Claude Shannon, a researcher at Bell Labs, proved that an 

encryption protocol can only be unbreakable if the key used is truly random and is greater 

in length than the message to be encrypted, and no part of the key is ever reused 

(Shannon, 1949).  The most well-known example of just such a protocol is the one-time-

pad (OTP).  Introduced by Gilbert Vernam of AT&T in the early twentieth century, the 

OTP was proven by Shannon to achieve perfect secrecy when implemented correctly 

(Shannon, 1949).  Perfect secrecy refers to the fact that no information about a plaintext 

can be gathered from its ciphertext or, in terms of Shannon entropy H(P|C) = H(P) where 
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P denotes the plaintext and C denotes the ciphertext.  Due to its information theoretic 

security, OTP represents the ideal symmetric-key protocol from a security standpoint but, 

like other symmetric-key protocols, suffers the weakness of requiring key exchange in 

order to be rendered useful.  Indeed, since the key required for use with OTP is the same 

length as the message to encrypt, the only known classical methods for establishing OTP 

keys between two geographically separated parties are by pre-sharing key material and by 

physical courier. 

Therefore, modern cryptographic suites sacrifice some security in the interest of 

practicality.  Symmetric-key schemes that require a reasonably small key are augmented 

with asymmetric, or public-key, protocols such as Rivest, Shamir, and Adelman‟s RSA 

algorithm for key distribution.  The security of these public-key protocols is often based 

on the difficulty of solving problems that are currently considered mathematically 

difficult and computationally expensive.  For example the security of RSA, which is used 

in online banking transactions, in the OpenSSH project, and a host of other Internet-based 

secure communication protocols, rests solely upon the perceived difficulty of factoring a 

large integer into two large prime factors.  In fact, it is readily seen that an RSA 

ciphertext contains no information-theoretic security: because an RSA public key 

contains all of the information required to determine the private key, all the information 

needed to extract the plaintext from its ciphertext is available to an eavesdropper with 

extraordinary computing capabilities.  While public-key protocols such as RSA are 

publicly secure within the context of today‟s computing capabilities, new techniques in 

factoring and distributed computing are advancing to the point of threatening these 

protocols.  For recent progress in factoring semiprimes, see (Kleinjung et al., 2010).  
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While the best known factoring algorithms are currently still too slow to be used against 

RSA in practice, algorithms exist for full factorization in polynomial time on quantum 

computers (Shor, 1994).  Experiments such as the factorization of 15 = 3 x 5 using Shor‟s 

algorithm on a quantum system show the realization of a device able to render our current 

key distribution techniques obsolete are not far-fetched (Politi, Matthews, & O'Brien, 

2009).  Such experiments underscore the need for secret key distribution techniques that 

are more robust than those based on computational complexity assumptions, and which 

are able to withstand an adversary that possesses a realized quantum computer. 

 Such cryptographic protocols have been studied for both the classical and 

quantum environment.  Post-quantum cryptography, which is generally used to describe 

classical quantum-resilient protocols, includes hash algorithms used for authentication 

and public-key algorithms used for key distribution.  For examples of progress in this 

field, refer to (Bernstein, Buchmann, & Dahmen, 2010).  Also hypothesized for secure 

key distribution is quantum cryptography.  This research focuses on a subset of the latter, 

namely Quantum Key Distribution (QKD).  QKD exploits generally accepted laws of 

quantum physics rather than computationally hard problems to achieve key distribution, 

and in its pure theoretical form, quantum key distribution is secure against an infinitely 

powerful adversary.  However, due to technological limitations, realizing ideal systems in 

the physical world is not possible and requires assumptions be softened.  Thus practical 

implementations of quantum key distribution protocols require that legitimate parties of 

the key distribution protocols verify that they have obtained a truly secret and identical 

key.  The steps of a quantum key-distribution protocol are shown in Figure 1, and are 

described in greater detail in subsequent chapters of this thesis. 
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 The research presented in this thesis focuses on the Reconciliation phase of QKD, 

addressing critical parameters of the Winnow reconciliation protocol.  The following 

questions highlight areas critical to the improvement and analysis of Winnow: 

 How closely can Alice and Bob estimate the initial error rate without directly 

comparing a portion of the secret keys?  How close must their error estimations be 

for Winnow to succeed?  How can Alice and Bob affect this resolution? 

  How can Alice and Bob choose an efficient block-size schedule given an estimated 

initial error rate?  What are efficient block size choices? 

 What effect do burst errors have on the operation of the Winnow protocol?  Are these 

types of error distributions mitigated by shuffling the sifted key? 

 How does Winnow perform on other metrics typically used to compare error 

reconciliation protocols? 

The primary goal of this research is to determine and provide block size schedules for 

error rate estimates up to 0.20, which decrease the number of exposed bits of previously 

suggested methods.  Block size choice is important for the optimality of Winnow.  If the 

block size is too small, then Alice and Bob are likely to waste extra bits through parity 

comparison.  However, if the block size is too large, then Alice and Bob may introduce 

errors into Bob‟s sifted key rather than correcting them.  Therefore the goal is to find a 

block size that maximizes Winnow‟s effectiveness.  Finally, this research provides an 

evaluation of this author‟s implementation of the Winnow algorithm in terms of 

throughput; information leaked and thus discarded throughout protocol operation; 

threshold of failure for Winnow; and a treatment of the time and communication 

complexity of the Winnow protocol.  The block size choice is defined theoretically and 
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determined empirically through Monte-Carlo simulation.  All other topics are also 

investigated by Monte-Carlo simulation. 

Chapter 2 presents background material on quantum key distribution and the 

Winnow reconciliation protocol, along with background material on two other popular 

Reconciliation protocols.  Chapter 3 describes the experiments conducted to evaluate this 

author‟s implementation of the Winnow protocol, and provides a methodology for 

choosing block size schedules for Winnow.  Chapter 4 gives the results of the 

experiments deigned and outlined in Chapter 3, along with a discussion of the results and 

their implications for the questions highlighted in this research.  Finally, Chapter 5 gives 

a brief summary of the findings and how they impact quantum key distribution. 

 

Figure 1. Progressive steps of a quantum key distribution protocol 
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II. Background 

 

2.1. Quantum Key Distribution 

In this chapter, a brief review of the principles of quantum physics is presented 

and literature relevant to the problem of error reconciliation, specifically the literature on 

Winnow, is presented. 

While a classical Shannon bit exists as 0 or 1 a quantum bit, or qubit, can exist in 

a superposition of those two states.  That is, a qubit is modeled in a 2-dimensional space, 

and thus any measurement of its state is probabilistic.  Upon being measured, the qubit 

assumes a deterministic state that is correlated with the method of measurement; this is 

termed collapsing the state, an action which is synonymous with destroying the original 

state of the qubit.  Much like a curve on a Euclidean plane can be projected onto the x- or 

y-axis, measuring the state of a qubit collapses said state onto one of its orthogonal 1-

dimensional “axes”.  These axes, which together comprise the basis of the qubit, can be 

associated with the values 0 and 1 for encoding information in the qubit, and the qubit 

will attain one of these measurements with a probability that is associated with the 

original state of the qubit.  Two bases are conjugate bases if they are mutually unbiased;  

that is, if a qubit is measured in its conjugate basis, the state of the qubit is collapsed onto 

one of the two orthogonal axes with equal probability and the information encoded in the 

initial state of the qubit is essentially lost. 

In the late 1960‟s, a graduate student named Stephen Wiesner proposed the 

exploitation of quantum mechanics to create a novel means of communication (Wiesner, 

1983).  The concept was innovative, and because a part of the research required the 
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ability to store quantum particles for an arbitrary length of time, Wiesner‟s work did not 

gain much immediate attention and did not see publication until over a decade later.  

Wiesner‟s work proposed two ideas.  One involves the creation of fraud-proof banking 

notes, which entails storing information in a quantum particle that could not be duplicated 

by a fraudster.  The other, which Wiesner called multiplexing, proposed the transmission 

of two (or more) messages in such a way that reading one of the messages necessarily 

destroys the others.  Wiesner‟s multiplexing involves encoding information in multiple 

conjugate bases of qubits, since observing the qubits in one of the bases implies the 

qubits are collapsed onto that basis and the data encoded in the other bases are lost.  This 

notion of destroying information by mere observation motivated a new area of study in 

applied quantum physics, and not long after the publication of this work, quantum 

cryptography was born (Brassard, A bibliography of quantum cryptography, 1993). 

The foundation of physical security for QKD is relatively straightforward. 

Quantum communication systems exploit the Heisenberg uncertainty principle, which 

implies that measuring a quantum system disturbs it and thus one cannot know 

everything about the state of the system prior to measuring it (Brassard, A bibliography 

of quantum cryptography, 1993).  It is due to this principle that an eavesdropper 

unintentionally and unavoidably introduces flaws into a quantum channel which are 

detectable by the legitimate users.  Therefore the security of a quantum channel rests, in 

theory, on fundamental laws of quantum physics rather than assumptions of the 

eavesdropper‟s computational power. 
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2.2. BB84 QKD Protocol 

Though Wiesner did not apply his discovery of multiplexing to the field of 

cryptography, this application was quickly identified by Charles Bennett and Gilles 

Brassard.  Bennett and Brassard described the advantage of Wiesner‟s multiplexed 

channels in cryptography; if an eavesdropper measures the state of a qubit improperly, 

she destroys the information encoded in that qubit.  The implication is that this loss of 

information can be detected by the legitimate sender and receiver, who can consequently 

determine that an eavesdropper is present and listening in on the conversation.  Bennett 

and Brassard subsequently proposed a system for sending messages assuredly free of 

passive and active eavesdropping, and noted the particular value of the system for the 

distribution of cryptographic key material.  This protocol became known as the BB84 

quantum key distribution protocol, named after its authors and year of publication 

(Bennett & Brassard, 1984).  The intention of BB84 is to utilize a quantum channel to 

distribute a random key the same length as the message to be encrypted, so that the key 

can be used as a OTP key.  The combination of QKD and OTP, when implemented 

according to their respective assumptions, offers a cryptographic suite that is impervious 

to an infinitely powerful adversary.  While achieving a OTP key is ideal, it is often 

unrealistic in practical contexts, and so a key long enough for use with another modern 

symmetric cipher that requires a smaller key can also be established with BB84. 

In BB84, photons are used to realize qubits.  Each photon is polarized using one 

of two mutually unbiased polarization bases.  Bennett and Brassard chose the rectilinear 

basis, comprised of 0- and 90-degree polarizations, and the diagonal basis, comprised of 
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45- and 135-degree polarizations.  A qubit polarized in one basis yields a random 

measurement in its conjugate basis. 

The BB84 system is composed of a one-way quantum channel and a two-way 

classical channel.  Owing to the physics of the channel, the quantum channel is subject to 

active eavesdropping but not passive eavesdropping.  The classical channel is subject to 

passive eavesdropping but not active eavesdropping, if some initially shared secret 

material is used for authentication.  The authors suggest the use of Wegman-Carter 

message authentication tags to satisfy this assumption on the classical channel (Wegman 

& Carter, 1981).  The sender, who is responsible for generating and transmitting random 

key material and will hereafter be referred to as Alice, must have a way to generate single 

photons and polarize them in each of the polarization bases discussed previously.  The 

receiver, hereafter referred to as Bob, is required to be able to detect and measure the 

state of single photons polarized by Alice.  A high-level view of the communication 

channels between Alice and Bob is shown in Figure 2.  In the figure, light lines represent 

a classical link and bold lines represent a quantum link.  The arrows represent the 

possible flow of information, and legitimate users are Alice and Bob. 
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Figure 2. Actors and channels in BB84 

When Alice and Bob wish to communicate a secret message, Alice generates and sends 

key material to Bob.  She begins by generating random bits for key material, or raw key, 

and random bits for basis choice and the combination of basis and key bit choices 

determines the polarizations with which she will encode her qubits.  For example, a key 

bit of zero would either be encoded in the rectilinear basis with a 0-degree polarization or 

in the diagonal basis with a 45-degree polarization, depending on the corresponding basis 

bit.  A bit of 1 would be encoded in the rectilinear basis with a 90-degree polarization and 

in the diagonal basis with a 135-degree polarization.  Once Alice has polarized a photon, 

she sends the photon over the quantum channel to Bob.  Bob then chooses a random basis 

with which to measure the photon.  He will choose the correct measurement basis one out 

of every two times on average.  When all of Alice‟s key string has been transmitted, 

Alice and Bob communicate over the classical channel to determine which qubits were 

sent and measured in the same basis.  On average, the qubits for which Alice and Bob 

choose mismatching bases are measured incorrectly with 50% likelihood, so all qubits for 

which the bases do not match are discarded.  The process of publicly comparing bases to 



12 

 

 

find mismatches, as well as determining which bits Alice sent and Bob did not receive, is 

called sifting, and the remaining string of key bits shared by Alice and Bob is referred to 

as the sifted key.  Ideally, in an environment in which no eavesdropper is present and the 

quantum channel is not susceptible to noise, once Alice and Bob have a sifted key then 

they share a random string that can be used as a secret key.  Appendix A illustrates a 

BB84 QKD exchange without an eavesdropper present. 

 However, there would be no need for secure communication if there were no 

threat of an eavesdropper, Eve, listening on the quantum channel.  Because the security 

of the channel lies in Alice and Bob‟s ability to detect Eve, it is essential to understand 

the impact Eve‟s activities have on the sifted key.  The sifted key contains all bits for 

which Alice and Bob used matching bases.  Assuming Eve intercepts and resends every 

qubit that Alice sends, she will randomly choose the incorrect measurement/sending basis 

with approximately 0.5 probability.  Therefore, on average, the sifted key bits shared by 

Alice and Bob will include bits which Eve measures incorrectly with 0.5 probability and 

resends to Bob, who measures incorrectly with 0.5 probability. 

 To detect an eavesdropper, Alice and Bob select a random sample of bits from the 

sifted key and compare them over the classical channel to estimate the error rate.  If the 

rate is unusually high, namely 0.5 x 0.5 = 0.25 or higher, they assume that there is an 

eavesdropper intercepting and resending their messages and start over. 

 There are other sources of error aside from an active eavesdropper. Error 

estimates are typically assumed to be correlated with the worst-case scenario of the 

presence of an eavesdropper, though it should be noted that many or all of the errors 

detected in a string of bits exchanged between Alice and Bob are typically due to 
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legitimate channel noise.  In the literature covered by this research, the quantum channel 

is generally modeled as a binary symmetric channel (BSC) in which there is a certain 

probability p, representing the error rate, that the key bit being transmitted is flipped.  In 

other words, if Alice sends the value 1 to Bob, then Bob will receive 0 with probability p.  

These errors are introduced by channel noise and other sources of interference.  Due to 

the possibility of legitimate noise being introduced into Alice‟s message, an important 

note is that error rate estimates only translate roughly to an estimation of errors 

introduced by an active eavesdropper (Nakassis, Bienfang, & Williams, 2004). 

 Of course, as with any cryptographic protocol, the ideal assumptions of BB84 are 

limited in reality by implementation issues.  For example, BB84 assumes the existence of 

a single photon source, quantum channels pure enough to carry the weak pulse generated 

by a single photon source, and detectors capable of detecting the weak pulse.  Since 

technology in this area has not progressed to the point of satisfying these ideal 

assumptions, today‟s BB84 implementations require additional phases before a shared 

secret key can be extracted from the sifted key measured by Bob.  These phases are error 

reconciliation, and privacy amplification.  The following sections provide a brief 

treatment of the phases that take place after Alice and Bob complete the quantum 

transmission phase of QKD. 

2.3. Sifting and Error Estimation 

 Sifting is the process of removing those bits from the key material for which 

Alice‟s sending basis and Bob‟s measuring basis do not match, and the result of sifting is 

the sifted key.  Once the sifted key has been extracted by Alice and Bob, they proceed to 
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estimate the error rate of the channel.  If the channel is considered a BSC with a chance p 

of Alice sending a bit and Bob obtaining the opposite measurement of the bit when 

measuring with the matching basis, then the error rate of the BSC is defined to be p.  If p 

is abnormally high, Alice and Bob conclude the transmission was intercepted by an 

eavesdropper and start the key distribution over.  More specifically, Alice and Bob decide 

on a threshold of acceptable error rate, say ε, such that if p > ε they decide an 

eavesdropper is present.  Assuming an eavesdropper measures and resends every photon 

in either the horizontal or rectilinear basis, ε should not exceed 0.25.  If the error rate is 

0.15 or higher then it is possible that an eavesdropper has intercepted and resent 60% or 

more of the transmissions; it is at this point that some believe the data should be 

discarded and the key exchange restarted (Nakassis, Bienfang, & Williams, 2004). 

 There has been a refinement of note that improves the sifting process in terms of 

throughput, by altering Alice and Bob‟s method for the selection of sending and 

measuring bases (Ardehali, Chau, & Lo, 1999).  If the probability of choosing one basis 

for encoding a qubit is denoted σ and, hence, the probability of choosing the other basis is 

1- σ, then the probability that Alice and Bob choose matching bases is given by the 

equation P= σ
2
+(1- σ)

2
 = 2σ

2
-2σ+1

 
.  This probability effectively establishes an upper 

bound for the transmission rate of the channel, because Alice and Bob only keep the bits 

for which they choose the same basis.  This probability function achieves a minimum 

when σ=0.5, the value used in BB84, which implies that the standard method for 

selecting a basis is theoretically the least optimal in terms of throughput.  For a visual 

reference, a plot of P(σ) is shown in Figure 3. 
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Figure 3. Probability of bases matching, as a function of basis choice probability 

 The authors propose using a different σ, with 0 < σ < 0.5, to achieve a better 

upper bound on the transmission rate of the key exchange.  For example the unbiased 

selection of σ=0.5 bounds the number of bits kept by 50%, while a biased selection of  

σ=0.1 bounds the number of bits kept by 82%.  As seen in Figure 3, biasing the selection 

of one basis over another offers an increase in probability that Alice and Bob have 

selected matching bases, and thus there is an increase in the potential transmission rate of 

the channel using this simple technique. 

 However, an eavesdropper can also bias her measurement basis choice and thus, 

like Bob, be more likely to choose the same basis as Alice for any given qubit.  This 

undermines the BB84 eavesdropper detection mechanism, which relies on the fact that  

Eve has no information about Bob‟s measurement basis choice before he announces it.  

To account for such a strategy, this biased basis selection technique also includes an 

alternate method of estimating error.  In QKD protocols the error rate is typically 

estimated by selecting a random subset of the sifted key and publicly comparing, and 
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then discarding, the bits.  Instead of choosing a random subset of all bits from the sifted 

key, Alice and Bob choose random subsets of the bits transmitted and received in each 

basis, and then estimate two basis-specific error rates.  They then compare each error rate 

to ε individually.  Theoretically, the error rates should be quite similar and should both lie 

below the established acceptable threshold.  This error estimation strategy effectively 

eliminates the advantage Eve gains by choosing the more probable basis every time. 

2.4. Reconciliation and Privacy Amplification 

 In any case, the transmission of qubits is largely affected by legitimate noise and 

non-idealities in the quantum channel regardless of whether an eavesdropper is present or 

not.  In order to correct these errors without directly comparing their keys, Alice and Bob 

perform error reconciliation.  There are two forms of reconciliation protocols, interactive 

reconciliation and one-way reconciliation.  Interactive reconciliation protocols require 

that Alice and Bob interact via the public classical channel in order to detect and correct 

discrepancies, while one-way reconciliation protocols involve one party dictating how the 

second party should identify and correct errors.  The public literature contains instances 

of both one-way and interactive reconciliation protocols.  Three of the most popular 

protocols will be described in further detail below, namely Binary, Cascade, and 

Winnow.  The first two are interactive protocols while Winnow is a one-way protocol. 

 The goal of reconciliation is to reduce the number of discrepancies between Alice 

and Bob‟s sifted keys in a way that guarantees Alice and Bob share an identical key while 

leaking as little information to Eve as possible.  In Binary and Cascade, parity bits are 

exchanged between Alice and Bob to aid Bob in a binary search to detect discrepancies in 
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his sifted key.  In Winnow, parity bits are exchanged to roughly locate errors, and 

syndromes of Alice‟s data are sent to Bob to pinpoint and correct the errors.  Because 

these interactions are conducted over the authenticated public channel it is assumed that 

Eve can inspect but not jam the transmission, and so throughout the reconciliation phase 

Eve gains as many bits of information about the sifted key as the number of bits 

communicated between Alice and Bob.  Specifically, if the number of bits sent between 

Alice and Bob is m, then Eve has gained m bits of information about the secret key (Van 

Assche, 2006).  As reported in (Kollmitzer & Pivk, 2010), the minimum information Bob 

needs to correct his key to match Alice‟s is given by nH(p) where n is the length of the 

sifted key, p is the error rate, and H is the Shannon entropy function.  Therefore a 

reconciliation protocol must reveal at least nH(p) bits and its efficiency in terms of 

information lost can be measured with respect to this bound. 

 Following reconciliation, privacy amplification reduces Eve‟s knowledge of the 

secret key gained during both quantum transmission and reconciliation to an arbitrarily 

small amount.  More specifically, if the length of the reconciled key is L bits and it is 

estimated that a potential eavesdropped has gained m bits of information about the key, 

then privacy amplification should reduce the reconciled key to a length of L-m bits.  If 

Alice and Bob instead reduce the length of their reconciled key to a length of L-m-s for a 

chosen parameter s, then Eve gains 2
-s
 bits of information about the key during 

reconciliation and her knowledge of the key can be made arbitrarily small (or large) by 

Alice and Bob‟s choice of s (Van Assche, 2006).  Lastly, every output bit from the 

privacy amplification phase depends on a large number of the input bits.  This bit 
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dependency implies that any information Eve has on Alice and Bob‟s reconciled key is 

masked by the information she does not have. 

2.5. Three Popular Reconciliation Protocols 

 In 1991 five researchers, including Bennett and Brassard, wrote a paper together 

describing what they termed the “first experimental quantum key distribution channel 

ever designed and actually put together” (Bennett, Bessette, Brassard, Salvail, & Smolin, 

1992).  In their research they designed and implemented an interactive error correction 

protocol, hereafter referred to as Binary, which laid the foundation for further research 

into the improvement of the reconciliation stage of QKD protocols. 

2.5.1. Binary. 

 In their experimental setup the authors, hereafter referred to as BBBSS, 

implemented the BB84 QKD protocol utilizing polarized photons in the rectilinear and 

circular bases.  The implementation worked just as in the seminal BB84 research, 

substituting the diagonal basis for the circular basis, which is comprised of left and right 

spins of the photon and is conjugate to the rectilinear basis. 

 Once Alice transmits a stream of random qubits to Bob and both parties have 

obtained sifted keys, the sifted keys are presumed to contain discrepancies introduced by 

an eavesdropper and other sources of noise in the transmission channel.  In order to 

assure that they share a common key, Alice and Bob perform a reconciliation protocol 

that detects and corrects discrepancies by binary search.  This protocol, called Binary, 

works as follows. 

 Alice and Bob exchange a subset of the sifted key to estimate the error rate of the 

quantum channel.  If the error rate is unnaturally high it may be due to the presence of an 
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eavesdropper, and Alice and Bob start over; this threshold is dependent upon the potential 

attack strategies of the eavesdropper.  If the error rate is reasonable then Alice and Bob 

publicly agree upon a random permutation to apply to the bits in an attempt to rearrange 

the discrepant bits, hereafter referred to as error bits, into a relatively random 

distribution.  Alice and Bob then divide the sifted key into blocks of N1 bits, an integer 

value that is dependent upon the error rate.  In general, N1 should be chosen such that 

each block is expected to contain one or less errors on average.  Next, Alice and Bob 

compare the parities of each block over the classical channel.  If Alice and Bob find a 

block for which the parity disagrees, then that block contains an odd number of errors and 

they bisect the block into two sub-blocks of length N1 / 2 and compare the parities of the 

first half to reveal which half contains the odd number of errors.  By continuing in this 

way, Alice and Bob are able to locate the error bit after exchanging approximately log2N1 

parity bits.  In order to reduce the information about the key gained by an eavesdropper 

during reconciliation, Alice and Bob discard a bit from every block and subblock for 

which a parity was leaked, a process referred to as privacy maintenance.  Once the errors 

of all blocks with disagreeing parities have been removed, Alice and Bob have finished 

the first pass of the protocol. 

 Note that any even number of (two or more) errors are not detected during the 

parity comparisons.  So Alice and Bob permute the key again before performing a second 

pass of parity comparisons and binary searches.  They continue in this manner for several 

passes, increasing the block size as the error rate of the sifted key decreases.  Since Alice 

and Bob discard a bit for every parity they calculate and share, they effectively waste a 

bit for any block which doesn‟t contain any errors.  So they switch to a more efficient 
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strategy called confirm and bisect when they are fairly confident that most errors have 

been removed.  Rather than calculating the parities of every bit in the sifted key, Alice 

and Bob calculate and compare the parity of a random subset of the sifted key.  If they 

find a subset for which their parity calculations do not match they perform Binary on that 

subset.  After a sufficient number of random parity comparisons revealing no errors –

BBBSS suggest 20 such comparisons – Alice and Bob are reasonably confident that their 

reconciled keys are identical.  Figure 4 shows the detection and correction of an error.  

The number in each block/sub-block represents the corresponding parity of that block.  

Blocks/sub-blocks with the parity shown in italics represents a block for which a bit is 

exposed.  Note that subdivided blocks do not contribute to the count of exposed bits, 

since the number of exposed bits in that block is the sum of those exposed in the 

subsequent step, and exposure estimation is deferred to that step.  The detected error is 

shown with a strikethrough. 

 

Figure 4. Correcting an error using Binary  
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It is readily seen that the number of bits Alice and Bob discard during Binary is 

given by   
 

  
          

 
       , where t  is the number of passes to performed, L is 

the length of the sifted key, Ni is the block size for the i
th

 pass, ri is the number of errors 

corrected in the i
th

 pass, and s is the number of bits discarded during the final random 

sampling phase.  Though the structure of the blocks is defined differently during the 

random sampling phase, s is similarly dependent upon the random block size, the number 

of errors detected and corrected, and the overall number of parities publicly compared. 

2.5.2. Cascade. 

 Shortly after Binary was published two of its authors published a refinement to 

the protocol in which they claimed to reduce the number of bits exposed during 

reconciliation to near the theoretical minimum, with the tradeoff of requiring greater 

processing costs (Brassard & Salvail, 1994).  Called Cascade, this protocol has the same 

basic structure as Binary with one major exception: rather than discarding bits as errors 

are detected and corrected, Alice and Bob retain all bits for use in future passes, which 

allows the algorithm to trace backwards. 

 Just as in Binary, Cascade begins with an estimation of the quantum channel‟s 

transmission errors by direct public comparison.  Once they have estimated the error rate 

of their transmission Alice and Bob divide their sifted keys into blocks, the size of which 

depends on the error estimate.  The choice of block size is important: if the blocks are too 

small, then many blocks will probably not contain errors and parity bits are needlessly 

exposed to Eve.  However, if the blocks are too large then more passes must be 

performed to correct all errors, because one pass of Cascade only corrects at most one 

error per block, requiring excess parity leakage in another way.  The authors of Cascade 
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empirically determined the ideal initial block size to be N1 ≈ 0.73/p where p is the error 

estimate (Van Assche, 2006).  Once parities are exchanged for each block, and the errors 

are corrected by performing Binary, Alice and Bob permute their bits and enter the 

second pass. 

 This is where Cascade differs from Binary.  Alice and Bob permute the sifted key 

and increase the block size to N2 = 2N1 then perform Binary to locate and correct errors.  

However if Alice and Bob detect an error b1, then because all parities in the previous pass 

indicated that there were no errors after the previous pass, they conclude b1 masked an 

additional error b2 in the previous pass. So they can locate b2 using knowledge of the 

initial position of b1.  To locate b2 Alice and Bob revisit the smallest sub-blocks for 

which b1 was previously involved in a parity calculation, and proceed to bisect and locate 

the masked error from there.  Unmasking that error may unmask other errors and so 

during any pass after the first, correcting a bit will cause the detection and correction of 

errors to cascade through previous passes.  Correcting a bit in a later pass implies that 

two bits will be corrected in the sifted key, so the probability that any given block in the 

sifted key contains an error decreases exponentially as the protocol increments to a new 

pass (Brassard & Salvail, 1994). 

 Since its publication Cascade has seen numerous improvements in the public 

literature.  One notable improvement greatly reduces the number of bits sent over the 

public channel by switching to a more efficient tactic after the second pass (Sugimoto & 

Yamazaki, 2000).  The authors showed empirically that half of the errors were generally 

corrected after the first pass, then half of the remaining errors were corrected in the 

second pass and cascaded to correct the additional remaining quarter of the errors, 
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leaving only a few errors after just the second pass.  Hence after two passes, Cascade 

could switch to confirm and bisect so that Alice and Bob compare a random parity rather 

than parities for every block in the sifted key.  By this method, Sugimoto and Yamazaki 

were able to increase initial and subsequent block sizes and minimize the number of 

parities exchanged over the public channel.  In doing so, the authors showed that their 

improvement leaked fewer bits to Eve and performed closer to the theoretical bound on 

throughput than the original Cascade. 

 Another improvement that can be made to Cascade is to modify the way bits are 

permuted between passes, in order to enhance the probability that two consecutive error 

bits do not mask each other in subsequent passes.  Two methods covered in (Nguyen, 

2002) are as follows: 

1. Create a new block containing the first bit of each block.  Then create a new block 

containing the second bit of each block.  Continue in this way until each of the 

bits has been placed into a new block.  Pair each block with a non-consecutive 

block and perform Cascade. 

2. Let ki be the block size for the next pass, and Kt the t
 th

 block in the next pass.  

Then Kt = {bu :  u ≡ t modulo ki}, where u is the index of bit b in the previous 

pass. 

Nguyen notes that this is rather inefficient for use in all passes, but will suffice to use 

between the first and second passes then revert to the original strategy of random 

permutations.  Another method replaces the random permutation conducted between 

rounds with a more complex interleaving technique that attempts to mitigate “error 

sticking”, or error clusters (Chen, 2000).  Such methods are shown experimentally by 
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Nguyen and Chen to improve the performance of Cascade in terms of minimizing 

information leaked during reconciliation. 

 In addition to such tweaks as manipulating block size and block structure, the 

literature contains Cascade variants that globally revise the algorithm.  One such variant 

goes so far as to completely do away with the error estimation phase that precedes the 

classical Cascade algorithm (Nakassis, Bienfang, & Williams, 2004).  In this variant, the 

authors propose subdividing the sifted key and comparing respective parities until a 

crucial number of sub-blocks between Alice and Bob have discrepant parities.  At this 

point, an error estimate is derived by means discussed in the research.  Of note is the fact 

that this method of estimating the error rate can be much more efficient than, say, 

throwing away half of the bits by public discussion, as is performed prior to the normal 

operation of Cascade.  The entire algorithm described by the authors is much different 

from Cascade, involving the jettisoning of entire blocks of bits for which the expected 

post-reconciliation yield is zero or negative. 

2.5.3. Winnow. 

 Binary and Cascade are well-studied and their correction power and throughput 

have been improved in many ways, namely through the choice of block size given the 

error rate in the input string.  However the literature seems to lack a rigorous proof for an 

upper bound on the information leaked to an eavesdropper by these protocols, and in fact 

the bound proposed by Brassard and Salvail can be exceeded experimentally (Yamazaki, 

Nair, & Yuen, 2006).  In addition to the problem of bounding information leakage, 

Binary and Cascade suffer from an extremely high communication complexity.  Owing 

to the interactivity of these two protocols, for which single parity bits must be sent 
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sequentially in order to correct a single error in each block, the number of messages sent 

to correct a single error in an N-bit block is log2N+1.  In a real-world implementation of 

Cascade, where network latency may be on the order of tens of milliseconds and a 

TCP/IP message adds 40 bytes of header information per segment (i.e. per bit sent for 

parity in Cascade), Binary and Cascade are highly inefficient when implemented over a 

TCP/IP network. 

 A reconciliation protocol providing solutions to both problems was proposed by 

W.T. Buttler et al. in 2003 (Buttler, Lamoreaux, Torgerson, Nickel, Donahue, & 

Peterson, 2003).  Called Winnow, this protocol is based on Hamming codes.  A short 

description of Hamming codes based on its treatment in (Hankerson, et al., 1991) is 

presented below, followed by the application of Hamming codes to reconciliation. 

 A Hamming code is a perfect code capable of correcting a single error and 

detecting two errors.  For any Hamming code, there are two matrices called the generator 

matrix and the parity-check matrix which are responsible for encoding messages and 

detecting and corrected errors in the codewords, respectively.  When a sender wishes to 

send a message, he computes the dot product of the message and the generator matrix and 

sends the resulting codeword to the receiver.  The receiver calculates the syndrome of the 

received data by computing the dot product of the received data and parity-check matrix.  

If the data is a codeword then the syndrome is zero, as the term „parity-check matrix‟ 

implies.  However, if the syndrome is non-zero, then one or more errors have been 

introduced into the sender‟s codeword, and the syndrome identifies the coset leader 

associated with the codeword most likely associated with the received data.  The 

codeword is the result of XORing the received data with the coset leader indicated by the 
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syndrome.  Codewords are of length 2
m

-1 for some m and have a distance of 3.  This 

implies that Hamming codes can detect 2 errors, but may not detect three or more errors, 

and can correct 
   

 
   errors.  In fact, if the Hamming algorithm is utilized to correct 

more than one error, an error may be introduced into, rather than eliminated from, the 

received data. 

 A few modifications are made to apply Hamming codes to the problem of 

reconciliation.  First, the data from Alice is not encoded and sent directly to Bob.  Doing 

so would make Eve‟s job much easier, as all she would need to do is decode the 

codeword to recover Alice‟s (secret) information, and thus this method would essentially 

compromise all of Alice‟s bits.  Furthermore, Alice would be sending more bits of 

information than are contained in the initial data, so the entire private key would 

eventually be eliminated for privacy maintenance. 

Instead, Alice calculates syndromes for her data and sends the syndromes.  That 

is, Alice divides her key into blocks of length N=2
m

-1 for some m, and constructs the 

parity-check matrix H where each element Hi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ 2
m

-1 is given by 

     
 

           .  The syndrome S for a block B, then, is the product H•B=S.  Alice 

sends the syndrome to Bob, who computes the syndrome of his data in the corresponding 

block.  If the syndromes match, that is              , then Bob has either zero 

errors or three or more errors; for an appropriately chosen block size and a random error 

distribution Bob can be reasonably confident that there are no errors when S=0.  If the 

syndromes do not match and Bob‟s string contains exactly one error, then S indicates the 

position in the string where the error can be found.  Flipping this bit will correct the error.  
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Figure 5 presents an example of correcting a single error in Bob‟s data.  Alice‟s data is 

represented by wa and the corresponding syndrome is Sa, and Bob‟s data is represented 

with similar notation. 

 

Figure 5. Correcting an error using Hamming syndromes 

 This is rather inefficient in terms of throughput as it implies that a single pass will 

expose approximately m=log2N bits per block, which will need to be eliminated for 

privacy maintenance.  Recalling that Winnow only corrects an error in blocks containing 

exactly one error, another modification is made to reduce the number of bits exposed by 

the Winnow protocol by introducing a parity comparison prior to each pass.  If the block 

size is chosen appropriately and the error bits are randomly distributed in Bob‟s key, 

there will likely be no more than one or two errors per block.  Bob sends Alice the parity 

of each block, and Alice calculates the parities of her blocks.  Alice then sends the 

syndrome of each block for which there is a parity error, that is, for which Bob‟s block 

contains an odd number of errors.  In this way Alice will not expose m bits of information 

in the form of a syndrome if there are no errors in Bob‟s data, and Alice and Bob will not 

attempt to correct any even number of errors in general, since Hamming codes can never 

correct an even number of errors in any given block. 
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 When one pass of Winnow is complete, the number of bits exposed for a block 

containing an odd number of errors is m+1 bits, and the number of bits exposed for a 

block containing an even number of errors is simply 1 bit.  Winnow performs privacy 

maintenance throughout the reconciliation phase.  Buttler et al. argue that this method, in 

contrast with the method of post-reconciliation maintenance used in Cascade, is better 

due to the fact that discarding bits during operation is likely to eliminate some errors 

unintentionally.  The initial block size is modified to be N=2
m
 for some m, since a bit is 

removed for parity comparisons before the syndromes are computed, making the block 

size the proper form for performing the Hamming algorithm.  If a syndrome is 

transmitted, bits are also discarded after syndrome comparisons.  The bits removed for 

syndrome comparisons are the bits whose positions in the block are of the form 2
k
 for 

0 ≤ k < m.  This selection is not arbitrary, rather these bits are the ones multiplied by the 

columns of the parity-check matrix of Hamming weight 1 and thus they are the bits that 

are maximally exposed in Alice‟s syndrome. 

 Because the parities and syndromes can be calculated for every block in parallel, 

and all single errors can be corrected in every block at once, a single pass of Winnow 

requires only two messages: a message from Bob to Alice containing the parity bits for 

each block and a message from Alice to Bob containing the syndromes for the blocks 

exhibiting parity errors.  Thus the communication complexity of Winnow is vastly 

improved over Cascade.  Furthermore, the amount of information exposed by Alice and 

Bob, along with the expected throughput of the algorithm, can be anticipated a priori in 

terms of the initial error rate.  These models are presented in Buttler‟s research. 
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 One further improvement is that, rather than publicly comparing and thus 

discarding a large number of bits for error rate estimation before Winnow, Alice and Bob 

begin the first pass of Winnow with a block size of 8 bits and determine the number of 

parity errors in Bob‟s data.  The error rate p, then, can be estimated probabilistically 

based on that value.  In the original research on Winnow Buttler et al. claim that knowing 

the initial error rate is sufficient for determining the ideal block size schedule given a set 

of data for successive passes, though a formula for finding the optimal block size 

schedule is omitted.  The error rate estimation technique suggested by Buttler et al. is 

presented and analyzed in Chapter 3 of this research. 

 The most notable factors that influence the performance of Winnow are the block 

size and the distribution of errors.  If a block contains an odd number of errors greater 

than one, Winnow may introduce a new error.  This is in stark contrast to Cascade, which 

never introduces errors and always corrects an error in blocks containing an odd number 

of errors.  Furthermore, if an even number of two or more errors exists and the errors are 

adjacent, they will never be corrected, which is a problem shared by Cascade.  To 

address burst-error scenarios, a random permutation is applied to the sifted key prior to 

each pass in Winnow to attempt to shuffle error bits into a random distribution. 

 However, while Winnow provides a fast and efficient way to correct errors in two 

correlated random variables without direct comparison, its authors do not discuss a 

method for choosing ideal block sizes.  Some improvements that have been applied to 

Winnow include the selection of block sizes in order to maximize throughput, that is, to 

maximize the amount of bits left after completing Winnow, or equivalently to maximize 

the amount of bits left and minimize the number of errors left.  In one paper, a block size 
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of 8 bits is experimentally determined to have a higher “correction capability” than a 

block size of 16 bits.  Hence, the ratio of  
                           

                        
  is greater after multiple 

passes with a block size of 8 than with a block size of 16, and so running Winnow with a 

fixed block size of 8 is better than running Winnow with a fixed block size of 16 for 

strings containing an initial number of errors in the range that are typical to today‟s QKD 

systems (Zhao, Fu, Wang, Lu, Liao, & Liu, 2007).  Another study attempting to 

maximize correction ability through block size choice experimentally determined that the 

best choice for block size would be approximated by the ratio       , where N is the 

block size and p is the initial error rate (Yan, Peng, Lin, Jiang, Liu, & Guo, 2009).  This 

result is quite similar to the choice of the initial block size for Cascade, for which 

Brassard and Salvail prescribe         as reported in (Van Assche, 2006). For both 

these improvements a fixed block size is used for all passes, rather than a dynamic block 

size that accounts for the decreasing error rate like the doubling strategy in Cascade.  In 

fact, aside from a few specific instances in the Buttler et al. research, the public literature 

does not include a treatment of the use of different (i.e. increasing) block sizes for 

successive passes in Winnow.  Such a selection strategy would aid in improving the 

throughput of the Winnow reconciliation protocol. 
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III. Experimentation 

 

3.1. Research Questions and Goals 

 While “quantum channel only” QKD is a promising future technology, the current 

technological readiness of publicly available QKD systems is such that public channel 

discussions remain essential.  Central to the public channel component of QKD is the 

reconciliation phase.  Cascade is currently the best known and most researched method 

for reconciliation, though the speed and communication efficiencies with which Winnow 

operates make Winnow a good competitor in certain operating conditions.  And while 

researchers have analyzed and improved Cascade, similar analyses have not been applied 

to Winnow.  Specifically, the public literature lacks a discussion of the choice of ideal 

block sizes given an estimated error rate, to maximize throughput while maintaining the 

speed and communication efficiency of Winnow.  The following questions highlight areas 

critical to the improvement and analysis of Winnow: 

 How closely can Alice and Bob estimate the initial error rate without directly 

comparing a portion of the secret keys?  How close must their error estimations be 

for Winnow to succeed?  How can Alice and Bob affect this resolution? 

  How can Alice and Bob choose an efficient block-size schedule given an estimated 

initial error rate?  What are efficient block size choices? 

 What effect do burst errors have on the operation of the Winnow protocol?  Are these 

types of error distributions mitigated by shuffling the sifted key prior to the first pass 

of Winnow? 
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 How does Winnow perform on other metrics typically used to compare error 

reconciliation protocols? 

The primary goal of this research is to determine and provide block size schedules for 

error rate estimates up to 0.20, which decrease the number of exposed bits of previously 

suggested methods.  A review of the public literature has not revealed a solution to this 

problem.  Block size choice is important for the optimal efficiency of Winnow.  If the 

block size is too small, then Alice and Bob are likely to waste extra bits through parity 

comparison.  However, if the block size is too large, then Alice and Bob may introduce 

errors into Bob‟s sifted key rather than correcting them.  The final research question is 

simply an evaluation of this author‟s implementation of the Winnow algorithm in terms of 

throughput; information leaked and thus discarded throughout protocol operation; 

threshold of failure for Winnow; and a treatment of the time and communication 

complexity of the Winnow protocol.  Time and communication complexity are discussed 

in Appendix B. 

 Chapter 3 provides a brief description of the implementation of Winnow and the 

simulation environment, followed by a description of the experiments designed to answer 

these research questions. 

3.2. Implementing Winnow 

 For this research, the Winnow protocol is implemented in C++ using two classes: 

one class is used to store and manipulate large buffers of bits efficiently both in memory 

and time, and the other class is used to perform the operations specific to Winnow, such 

as the calculation of syndromes and removal of bits.  A third C++ file containing a main 
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function is used to drive the program, and generates a random sifted key.  Errors are 

added to Bob‟s sifted key in accordance with the error rate specified by the user; this 

error rate is analogous to the error rate of the quantum channel, where the quantum 

channel is modeled as a binary symmetric channel.  Therefore, the term “error” refers to a 

bit that is flipped during transmission.  For randomly distributed errors, the errors are 

added such that each bit has an equal probability of being in error.  For single burst 

errors, errors are introduced in a large block and the rest of the errors are distributed 

randomly.  And for periodic burst errors, blocks of errors are introduced at a regular 

interval in accordance with the input error rate and size of the bursts. 

 Once the sifted keys are established, Bob computes his parities and „sends‟ them 

to Alice.  Alice then computes and compares her parities with Bob‟s, and for any blocks 

exhibiting a parity error Alice computes the syndrome of that block.  Alice „sends‟ a list 

of block numbers that exhibit a parity error along with the corresponding syndromes to 

Bob, who then computes his syndromes for the blocks of interest.  If the syndromes 

match, Bob determines that one of two events occurred: either the error was discarded 

after comparing parities, or there are three or more errors in the block.  In either case, it 

would not be beneficial to attempt to correct an error, and Bob does not attempt to fix any 

errors.  Once Bob has fixed all feasible errors for the pass, Alice and Bob permute their 

bits in according to a publicly shared random permutation and proceed with the next pass.  

Minor tweaks are made to this process to facilitate experimentation as the particular 

experiment demands, but those changes are discussed in the following sections.  Source 

code for this implementation of Winnow can be found in Appendix B and Appendix C. 
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 The simulations are run on a Dell Latitude E6500 laptop with 4 GB of memory 

and an Intel Core2 Duo 2.66 GHz CPU.  The operating system running on the laptop is 

Ubuntu Desktop 10.10 (Linux kernel 2.6.35-38).  Development is done in Eclipse SDK 

and simulations for the following experiments are run from the command line.  Status 

updates are printed to the screen, and statistical data are printed to tab-delimited files.  

Timing is done with a resolution of seconds. 

3.3. Experiment 1: Error Rate Estimation 

3.3.1. Determining error rate theoretically. 

 As proposed in the seminal research on Winnow, the error rate between Alice and 

Bob‟s sifted keys can be estimated probabilistically without publicly comparing and 

discarding a subset of the sifted key prior to reconciliation.  Assuming each bit has an 

equal probability p of being in error, the probability of n bits being in error and N-n bits 

not being in error is given by p
n
(1-p)

N-n
.  These errors can be arranged in multiple 

configurations within the block.  There are “N choose n” different ways for n bits to be in 

error in an N-bit block, and so the probability of n errors occurring in an N-bit block in a 

sifted key with error rate p is estimated by Equation 1: 

  
 
 
            (1)  

Hence, the probability of obtaining an odd number of errors in an N-bit block is 

represented by Equation 2: 
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If the first pass of Winnow is performed with a block size chosen independently of the 

initial error rate, then the ratio of blocks for which Alice and Bob have disagreeing 

parities or parity errors is known.  That is, the probability that any block in a given set of 

data contains an odd number of errors is known.  Setting this parity error ratio equal to 

Equation 2 gives Equation 3: 

 

                       

                      
   

 
    

                   

 
   

 
 

   

 (3)  

Intuitively, proceeding with the smallest block size of N=8 bits for the first pass will give 

the best resolution for the parity error ratio.  For sufficiently small error rates a block size 

greater than 8 may be acceptable, but without a priori information about the error rate it 

is suitable to assume the error rate lies in the range typical of many of today‟s 

implementations of QKD systems, and an initial block size of 8 bits is the best choice in 

general (Buttler, Lamoreaux, Torgerson, Nickel, Donahue, & Peterson, 2003).  Note that 

all the variables in Equation 3 are known but p, the error rate, and solving for p gives 

Equation 4: 

 

  
 

 
    

         

    
 

 
 
  (4)  

Where      gives the total number of blocks, and     gives the number of blocks 

exhibiting a parity error.  In this way, Alice and Bob can estimate their error rate for any 

block size N. 
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3.3.2. Confirmation of estimation function. 

 After running Winnow in the simulation environment and gathering data on 

number of blocks exhibiting parity errors and total number of blocks, Figure 6 shows the 

parity error ratio as a function of actual initial error rate for a 1,000,000 bit input buffer 

and averaged over 50 trials. 

 

Figure 6. Relationship of parity error ratio and error rate 

The curve represents the binomial distribution given on the right side of Equation 3 for 

N=8.  Thus the experimental data confirms the accuracy of the theoretical estimation of 

error rate given in Equation 4. 

3.3.3. Simulation parameters and factors. 

 Variables that affect the error rate estimation are the distribution of errors within 

the sifted key, block size, initial error rate, and length of the sifted key.  The parameters 

that are manipulated for this experiment are error rate, which is controlled to be chosen 

randomly between 0% and 20%, and length of the sifted key, which is controlled to be 

chosen randomly between 10,000 and 10,000,000 bits.  The block size is fixed at 8 bits, 
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as suggested by Buttler et al.   The errors are assumed to be distributed randomly for this 

experiment. 

3.3.4. Approach and methodology. 

 In order to test the effectiveness of the error estimation strategy given by Equation 

4, a single pass of Winnow representing the first pass in a normal reconciliation effort is 

performed on two strings with a variable error rate and a fixed length.  Once Alice and 

Bob have exchanged parity error information, Equation 4 is used to estimate the error rate 

based on the parity error ratio and total number of blocks.  The recorded data includes the 

actual error rate, determined by an Oracle that has access to both Alice and Bob‟s sifted 

keys, and the estimated error rate.  The metric used to compare the estimation with the 

actual error rate is by a factor of deviation, measured as: 

 
           

                                      

                 
  (5)  

 This method of error estimation is statistically based, so another important 

question to answer is how large the input buffer must be in order to give a statistically 

significant error rate estimation.  To attempt to answer this question, Experiment 1 is 

conducted again with the length of the input buffer made to vary.  Once the buffer size is 

such that factor of deviation is consistently less than 0.10, the estimation is considered 

sufficiently close.  For an explanation of this determination, refer to the results and 

discussion for Experiment 1 in Chapter 4. 

3.3.5. Expected results. 

Success is measured by plotting pairs of actual error rates and their corresponding 

estimated error rates and measuring the coefficient of determination of the resulting linear 
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regression.  The regression is expected to have a slope of 1, and the coefficient of 

determination will be sufficiently close to 1 if the estimate is accurate.  A conclusion is 

drawn about the necessary length of input size based on the deviation of the estimate 

from the actual error rate being sufficiently close.  Suggestions are made for an input size 

for the remaining experiments, keeping in mind both accuracy of error rate estimation 

and simulation time. 

3.3.6. Assumptions and limitations. 

 The inverse of Equation 3 is needed to find an equation for the estimation of p in 

Equation 4, however the inverse of Equation 3 is not a function.  Therefore, Equation 4 

exhibits asymptotic behavior that will limit the ability of this method to estimate error 

rates that are much greater than 20%.  This argument can be visualized by referring to 

Figure 6; a critical parameter of the error estimation function presented in Equation 4, 

namely the parity error ratio, ceases to increase as the number of errors continues to 

increase beyond approximately 20%. 

The symmetry exhibited by Figure 7 is not a major issue.  Although an error rate 

of 90% will yield the same estimation using this function as an error rate of 10% Alice 

and Bob attribute such high error rates to a calibration error, and so if Alice and Bob 

recalibrate the error rate can always be assumed to be less than 50%. 
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Figure 7. Parity error ratio as a function of error rate 

Finally, because this method is dependent upon parity measurements its accuracy 

is highly dependent upon the normal distribution of errors.  For example, an error rate of 

0.10 may yield an estimate of 0% if the errors occur in pairs, or an estimate of 10% if the 

errors are evenly spaced.  So this experiment assumes that errors are randomly 

distributed. 

3.4. Experiment 2: Method for Dynamic Block Size Choice 

3.4.1. Defining “ideal block size” theoretically. 

 Recalling that Winnow is based on Hamming codes, which are perfect single error 

correcting codes, the following observations can be made.  If a block contains an odd 

number of errors greater than 1 then the efficiency is adversely affected; not only will 

log2N bits be discarded for the syndrome and 1 bit for the parity, but Hamming will likely 

introduce an error that will require correction in a later pass.  Furthermore, if there is an 

even number of errors, one bit is discarded for parity and unless an error is discarded 

accidentally, no errors are corrected.  Hence the power of Winnow can be fully utilized if 

a block contains exactly one error.  Finally, if a block does not contain exactly one error, 

then Winnow will perform better on average if the block contains no errors than if the 
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block contains two or more errors.  Ideal block size is used here to refer to the block size 

for which a block is most likely to contain exactly one error, given an estimation of the 

relative rate of errors in the sifted key.  Ideal error rate is used to refer to the error rate 

for which a block of a given size contains exactly one error. 

3.4.2. Selecting the ideal block size theoretically. 

Following the reasoning by which Equation 1 is derived, the probability that an 

N-bit block contains exactly one error when the initial error rate of Bob‟s key is p is 

given by Equation 6. 

               (6)  

The goal is to maximize p1 through choices of block size for any given p, and by the 

reasoning outlined above maximize the correction potential of Winnow.  One example 

showing the block size choice which maximizes Equation 6 for an initial error rate of 

0.10 can be seen in the plot of Equation 6, shown in Figure 8: 

 

Figure 8. Probability of one error per block as a function of block size 

While Figure 8 provides visual evidence of the ideal block size given an error rate of 

0.10, it is advantageous to be able to compute the ideal block size given any error rate.  
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This can be done by setting the first derivative of Equation 6 with respect to N equal to 

zero and solving for N.  The result is given by Equation 7: 

 
   

 

       
 (7)  

For the example with an error rate of 0.10, the ideal block size is N=9.49 bits.  In 

practice, due to the nature of Hamming codes, the block size must be a power of two, so 

the estimate given by Equation 7 can be rounded down to the nearest power of two to 

ensure one or less errors in a block. 

 Another way to view this result is to solve Equation 7 for the error rate p in terms 

of the block size.  Equation 8 gives this result. 

 
      

  
  (8)  

The results are interpreted as, the ideal error rate for a block size of N bits is   .  Table 1 

provides the ideal error rates for block sizes 8 through 1024. 

Table 1.    Ideal error rates for each block size up to 1024 bits 
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Each ideal error rate can be interpreted as the threshold above which a block of size N is 

expected to contain more than one error on average, and below which a block of size N is 

expected to contain less than one error on average.  So a strategy for selecting the ideal 

block size given an error rate p is to choose the block size N for which the inequality 

given in Equation 9 holds. 

           (9)  

If p is greater than p8 then a block size of 8 bits should be used and if p is less than p1024 

then a block size of 1024 bits should be used.  The effective operation of Winnow 

requires an upper bound on the error rate.  For a weak bound, Buttler and his team note 

that Hamming will introduce more errors than it will correct when p≈0.30.  A stricter 

bound on this rate is not in the scope of this experiment. 

3.4.3. Approach and methodology.  

 Determining the ideal block size schedule for a given initial error rate is done 

either dynamically, or using a lookup table.  In this experiment, the block size schedule is 

first determined dynamically and then the resulting data comparing the error rate and 

appropriate block size schedule is analyzed to generate a lookup table.  The process for 

dynamically determining the best next block size introduces a large number of floating 

point operations into Winnow‟s code in practice, and thus while the throughput is 

expected to increase, the completion time is expected to show a marginal increase over a 

non-adaptive block size selection process. 

In dynamically determining the best block size schedule, Alice and Bob begin 

with a block size of 8 bits for the first pass.  After comparing parity bits, Alice and Bob 

can estimate the error rate between their sifted keys using Equation 4.  Once they have 
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this information they can select the best next block size based on the error rate estimate, 

the values in Table 1, and the selection scheme in Equation 8.  At the beginning of each 

pass Alice and Bob recalculated the error rate estimate and select the ideal block size for 

the next pass, keeping a count of the number of passes using each block size.  The 

protocol terminates when Alice and Bob estimate an error rate of 0. 

 The lookup table, then, is generated from the results of the dynamic selection 

process.  The reason for hard-coding block-size schedules is to remove most of the 

floating point operations of the dynamic method in hopes of maintaining the speed with 

which Winnow performs reconciliation, while also utilizing the findings of the dynamic 

method to achieve lower information leakage and thus higher throughput.  The data from 

the dynamic method is sorted according to error rate, and divided into subsets 

representing a range of error rates.  For example, all error rates p such that 0 < p ≤ 0.01 

will use the block schedule for p=0.01.  The ideal block size schedule lookup table is 

derived by applying the following rules to the data: 

1. If the number of passes using a particular block size is frequently traded for the 

next larger block size, there is no need to do a pass with both block sizes.  Select 

the maximum number of passes of the smaller block size and the minimum of the 

larger block size. This will slightly impact throughput but ensure that Winnow 

will correct all errors.  An example derived from this research is given in Table 2 

in Chapter 4. 

2. For all other block sizes, use the maximum number of passes for which each 

block size was used in the dynamic method. 
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These rules ensure not only that error rates in the applicable range are covered by the 

ideal block size schedule, but also that the schedule works well for error rates at the low 

end of the next higher range.  

3.4.4. Simulation parameters and factors. 

 For both the dynamic block size selection method and the lookup selection 

method the length of the sifted key, the initial error rate, the block size, and the 

distribution of errors are parameters that affect the ability of Winnow to locate and correct 

errors.  The length of the sifted key is fixed at 1,000,000 bits, and the errors are 

distributed randomly throughout Bob‟s sifted key.  The block size is determined by the 

algorithm for the dynamic selection method, and is a fixed input parameter for the lookup 

selection method.  The factor for this experiment is the error rate, which varies randomly 

between 0% and 20% for each of 1,000 trials. 

3.4.5. Expected results. 

 This dynamic selection method is expected to offer slightly higher throughputs 

over the lookup selection method at a small cost of speed.  Throughput is defined as the 

percentage of sifted key remaining after performing reconciliation.  The throughput is 

expected to be higher for sifted keys with a low error rate than for sifted keys with a high 

error rate, as more errors require more parity bits and syndromes to be exchanged, and 

thus exposed and discarded.  This method is expected to perform better in terms of 

throughput than a non-adaptive method; the throughput is compared with such a method 

as well as the theoretical bound on throughput.  The theoretical limit is proposed in 

(Kollmitzer & Pivk, 2010), where the minimum number of bits exposed by a 

reconciliation protocol is given by the Shannon entropy of the error rate.  Note that for 
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Winnow, „exposed bits‟ is synonymous with „discarded bits‟ and so throughput represents 

the number of bits not exposed during Winnow.  An example of a non-adaptive protocol 

is to fix the block size for all error rates to be 8 bits for all passes, as suggested in (Zhao, 

Fu, Wang, Lu, Liao, & Liu, 2007). 

The number of passes for which each block size is used is not expected to be 

correlated with the initial error rate in general.  The number of passes with a block size of 

8 bits will likely increase as error rate increases.  However, since the passes with 8-bit 

blocks will always drive the error rate below the ideal error rate for 8-bit blocks, a fixed 

value, before increasing the block size it is expected that the number of passes for which 

a block size of 16 or more bits is used will be very similar for all error rates. 

3.4.6. Assumptions and limitations. 

Note that error rates over 15% are considered unacceptable for BB84, as error 

rates of this magnitude can be attributed to the presence of an eavesdropper (Nakassis, 

Bienfang, & Williams, 2004).  Therefore this method only seeks ideal block size 

schedules for error rates less than 0.20.  In using these methods for selecting ideal block 

size schedules, Alice and Bob have the primary goal of ensuring all errors are detected 

and corrected and the secondary goal of maximizing the throughput of Winnow. 

A limitation of this block size selection method is that its success is based on 

statistical assumptions of the distribution of errors within Bob‟s sifted key, both for the 

estimation of the initial error rate as well as intermediate error rates, in the dynamic 

selection method.  The methodology proposed for the dynamic selection method is 

relatively unaffected by the type of distribution of errors in the sifted keys, since the error 

rate is estimated continually during every pass and bits are randomly permuted between 
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each pass, but the lookup selection method is affected if the distribution of errors is non-

random prior to the parity-based error estimation method described in Experiment 1.  See 

Experiment 3 for a discussion of the effect of error distribution. 

3.4.7. Advanced selection method. 

This approach has one more limitation.  The selection of the next block size is 

based upon Alice and Bob‟s estimation of the rate of errors in Bob‟s sifted key.  This 

estimation occurs after parity bits are exchanged, but prior to exchanging syndromes.  

Therefore, once the error estimation is acquired it is too late to change the block size, and 

yet the actual rate of errors in Alice and Bob‟s strings will be altered before the selected 

block size is used.  Therefore, while the block size chosen from the error rate estimation 

will be small enough and have a high enough correction power to eliminate errors, it may 

be smaller and hence less efficient than necessary.  To test this hypothesis, a second 

round of experiments referred to as Experiment 2 Variant is performed using an identical 

methodology to that presented for Experiment 2, but for this variant an attempt will be 

made to estimate the number of errors that will be corrected by the pass in progress, and 

hence attempt to determine what the best block size will be after the pass is complete.  To 

accomplish this more informed estimation, the following factors are considered when 

estimating error rate: 

1. The error rate is first estimated per the method described in Experiment 1.  

This estimate represents the error rate prior to performing the current pass of 

Winnow. 

2. The probability that a block contains one error is computed, and the 

probability that a block contains an odd number of errors other than 1 is 
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computed.  The normalized values represent percentages of blocks exhibiting 

parity errors for each category.  Consider these equations: 

               

              
 
 
            

    

    
(10)  

The fraction    
  

             
 gives the probability that an error is corrected 

in a block with a parity error, and 1-pc gives the probability that an error is 

introduced under those conditions. 

3. The probability that a block contains a nonzero even number of errors is 

computed.  The fraction of blocks with an even parity will have an error 

unintentionally discarded for privacy maintenance after parity comparison 

with probability n/N, for a block size of N and an even number of errors n. 

For simplicity, this is only done in passes with a block size of 8 bits.  It is also assumed 

that the probability of discarding an error from a block with an even number of errors in 

Factor 3 is 2/N, as there is only a 0.008 chance than an 8-bit block contains an even 

number of bits greater than 2.  The results of Experiment 2 Variant are compared with the 

results of Experiment 2.  Experiment 2 Variant is expected increase the throughput 

marginally over Experiment 2. 

3.5. Experiment 3: Effects of Error Distribution on Winnow Operation 

3.5.1. Potential types of error distributions. 

 This experiment quantifies the effect of the distribution of errors in the sifted key 

with regards to the effectiveness of Winnow, and the effectiveness of randomly permuting 
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the sifted key prior to running Winnow in mitigating any negative effects of non-random 

errors.  Error distributions of particular interest are random distributions of errors, a 

single burst error among an otherwise random distribution of errors, and periodic burst 

errors. 

 Randomly distributed errors are introduced according to the philosophy that each 

bit has a probability equal to the input error rate of being in error.  Therefore, randomly 

distributed errors may occur at regular intervals but may also exhibit small burst patterns. 

 Single burst errors are relatively large clusters of errors introduced into the sifted 

key.  These bursts do not represent the total error rate, and the rest of the errors are 

introduced into the key in a random distribution around the burst.  Periodic burst errors 

are errors that occur in the sifted key in clusters at regular intervals.  Figure 9 shows 

examples of each of these types of error distribution. 

 

Figure 9. Types of error distribution 

3.5.2. Simulation parameters and factors. 

 Parameters of Experiment 3 include length of the sifted key, type of error 

distribution, length of the error burst (if applicable), the selection of block size schedule, 

and input error rate.  The length of the sifted key is fixed at 1,000,000 bits.  For burst 
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error patterns the size of the burst is selected as a percentage that varies between 1% and 

10%, of the total number of errors.  Percentages of total errors are used rather than a fixed 

value so that the number of errors in a burst is relative to the total number of errors.  For 

example, a 100-error burst intuitively has much less impact if the error rate is 15% than if 

the error rate is 1%, and this issue is overcome by using a burst size relative to the total 

number of errors.  The initial error rate varies between 0% and 20%.  The selection of the 

block size schedule is lookup-based and uses the lookup table from Experiment 2. 

3.5.3. Approach and methodology. 

 Each burst size is simulated over 5,000 Monte Carlo trials, with and without 

initial random permutation of the input buffer.  The output of the simulation consists of 

throughput and maximum errors left after performing Winnow.  The introduction of 

randomly distributed errors involves flipping each bit in Bob‟s key with probability equal 

to the error rate.  The introduction of single burst errors involves selecting a random 

starting position for the burst, introducing errors up to the burst length for that trial at that 

position, and then introducing the remaining errors evenly outside of the burst.  The 

introduction of periodic burst errors involves dividing the total number of errors into 

bursts of the specified length and introducing these bursts at regular intervals into Bob‟s 

sifted key.  The burst length is defined by a fraction of the total error rate of the sifted 

key; for example, if the error rate is 10% and the burst size specification rate is 0.05, then 

some 0.5% of the sifted key contains consecutive errors.  For a visual example, in  

Figure 9 the burst size specification rate is approximately 0.3 and indeed approximately 

one third of the total number of errors occurs in each burst.  This definition is chosen to 
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ensure that the actual burst size scales with error rate, where fixing a small burst size to 

work in both high and low error rates would likely not provide meaningful output. 

3.5.4. Assumptions and limitations. 

 This experiment assumes that burst errors occur in perfect blocks.  The periodic 

burst error experiment assumes that those perfect blocks occur in perfect intervals.  

Furthermore, the reader should note that this definition of randomness naturally generates 

burst errors anyway.  For a series of N Bernoulli trials with two outcomes of equal 

probability, there is expectedly one string of log2N consecutive trials for which the 

outcome is the same.  For example, out of 30 coin flips one can expect a string of 4-5 

consecutive heads or tails.  And in introducing errors randomly into an input of one 

million bits, which is a Bernoulli trial with a parameter p, one can similarly expect 

multiple consecutive errors.  Therefore randomly distributed errors here are not expected 

to be uniformly distributed, and in general this error distribution may actually be 

interpreted as representing sparsely distributed and small single burst errors.  This is not 

expected to affect the outcome of this experiment, and in general represents a better 

characterization of real-world QKD systems than would uniform errors. 

3.5.5. Expected results. 

 For a random error distribution, Winnow is expected to operate normally, as it was 

designed to work under such conditions.  For burst errors, Winnow is expected to fail to 

correct blocks containing burst errors on the first pass and is expected to perform sub-

ideally.  Blocks containing a large number of errors affect the operation of the Winnow 

protocol, such as Hamming introducing errors into blocks with odd number of errors 

greater than 1.  Furthermore, burst errors are expected to affect the error estimation 
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phase, especially for periodic burst error patterns, which will affect the choice of block 

size and thus the correction ability of Winnow.   This result will be reflected in the 

throughput and number of remaining errors.  The failures induced by burst error 

distributions are expected to be rectified by applying a random permutation to the sifted 

key prior to performing reconciliation.  
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IV. Results and Discussion 

 

The results of the Experiments described in Chapter III are provided below.  Once 

the results are presented and conclusions drawn, some additional findings on the 

performance of this implementation of Winnow are presented. 

4.1. Experiment 1: Error Rate Estimation 

 The plot shown in Figure 10 summarizes the data collected from the error 

estimation experiment for an input buffer length of 1,000,000 bits and error rates between 

0% and 20%.  The x-axis is the rate at which errors were introduced into Bob‟s sifted 

key, or actual error rate, and the y-axis is the estimated error rate.  The data points 

represent 1,000 trials. 

 

Figure 10. Estimated error rate compared to actual error rate 

There is clearly a linear relationship.  A linear regression fits the data visible well, 

and the coefficient of determination (R
2
 value) indicates the line is a good fit for the 

range of values shown in Figure 10.  However, this method of error estimation is not very 
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effective for actual error rates larger than 0.20.  Figure 11 shows a plot of error estimation 

and the corresponding actual error rate for error rates ranging between 0% and 100%. 

 

Figure 11. Estimated error rate compared to actual error rate 

 Not only is the correlation between actual and estimated error rates very weak for 

error rates between 25% and 75%, but in some cases the error rate cannot be estimated at 

all, which is represented by points lying along the x-axis.  Furthermore, the estimated 

error rate is falsely reported for actual error rates greater than 75%.  Error rates this high 

can be interpreted as calibration issues between Alice and Bob, and so in flipping every 

bit sent over the channel the rate can be kept below 50% errors and this issue of false 

reporting can be rectified.  The problem of lack of correlation for error rates between 

25% and 50% cannot be avoided. Therefore, Alice and Bob should start over if their error 

rates are estimated to be greater than 20%, or should use another method of estimation. 

 The size of the input also has a bearing on the resolution of the error rate estimate: 

too small an input buffer results in the estimation lacking statistical significance.  

However, for the purpose of simulating Winnow over large numbers of trials, the input 

must also be as small as possible.  Figures 12 and 13 show the relationship between the 
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size of the input buffer and the closeness of the estimated error rate to the actual error 

rate. 

 

Figure 12. Deviation of error estimation as a function of input buffer length 

With an input buffer length of 1,000,000 bits the deviation factor reaches a threshold 

of 0.10.  This factor translates roughly to an increase of 1% in the difference between 

actual error rate and estimated error rate for every increase of 10% in actual error rate.  

Larger buffers provide better estimate resolution, but with diminishing returns and 

generally increasing runtimes. 
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Figure 13. Deviation of error estimation as a function of input buffer length 

 In subsequent experiments, further data suggests this factor should be close to 

0.05.  For example, the results presented in Figure 17 indicate that Winnow tends to fail 

if the error rate estimation deviates by more than 1%.  This is to be expected, as the block 

size choices determined in Experiment 2 are effective for a ±1% range in general.  For an 

error rate of 10% the deviation factor would need to be 0.10 to keep the estimation 

difference below 1%.  However, for an error rate of 20% the factor should be less than 

0.05.  Hence, using these findings, it is suggested that for statistical significance in the 

error rate estimation conducted prior to performing Winnow, the input buffer should 

contain 2,000,000 bits.  Noting the sparseness of trials for which this factor exceeds 0.05 

with an input buffer of 1,000,000 bits, as depicted in Figure 13, this length is considered 

sufficiently large for the remaining experiments in this research in order to keep 

simulation times low. 

 The data presented in this section answers the following questions: 
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How closely can Alice and Bob estimate the initial error rate without directly 

comparing a portion of the secret keys? How can Alice and Bob affect this 

resolution? 

This is a function of the length of the sifted key that serves as input into the 

Winnow algorithm.  The error estimation method is based on the assumption that errors 

are normally distributed, and the function used to estimate the error rate requires a large 

enough sample size to provide a statistically significant estimation.  Depending on the 

input buffer size, one can approximate a “worst-case scenario” using Figure 12 and 

Figure 13.  Alice and Bob can affect the resolution of the error estimation by buffering a 

larger or smaller amount of sifted key prior to performing Reconciliation with Winnow. 

How close must their error estimations be for Winnow to succeed?   

Using an initial block size of 8-bits, the data from this experiment suggests that 

one should have 1,000,000 bits of sifted key prior to error estimation in order to achieve 

an estimate that differs by a factor of 0.10 or less.  Later experiments suggest that it 

would be desirable to have the estimate differ by no more than a factor of 0.05, and so it 

would be best for Alice and Bob to buffer 2,000,000 bits of sifted key prior to estimating 

error rate by the proposed method. 

4.2. Experiment 2: Method for Dynamic Block Size Choice 

 The experiment provided 1,000 lines of tab-delimited data, including the input 

error rate, throughput, and chosen block size schedule.  Results were sorted according to 

input error rate, and divided into 20 subsets each representing 1%error rate ranges 

between 0% and 20%.  Each subset is assigned a block size schedule that works most 



57 

 

 

effectively for the error rates in that section.  The patterns found in the data were 

remarkable. 

 As expected, an increase in error rate generally required an increase in correction 

power, thus an increased probability of choosing smaller block sizes.  It was a pattern 

similar to the little-endian binary representation of decimal numbers, for which larger 

binary digits are required to represent larger decimal numbers.  Consider the pattern 

shown in Table 2, which is a subset taken from the actual data.  The full raw data and 

analyses can be found on the accompanying CD. 

 Some conclusions can be drawn from the data in Table 2, which was selected due 

to its representation of a transition in the need for a higher correcting power.  This 

transition is evident in the variation between a block size of 64 bits and a block size of 

128 bits for the middle range of rates shown, and also in the need for a second pass with a 

block size of 1024 bits when the algorithm chose a block size of 128 bits and perhaps 

should have chosen the stronger block size of 64 bits.  The ideal schedule for error rates 

0% to 1%, within which this data lies, was selected to be {1,0,0,1,0,0,1,2}, where each 

number represents the number of passes performed using block sizes of, respectively, 

{8,16,32,64,128,256,512,1024} bits.  This selection is the product of the analysis 

conducted on the raw data in provided on the accompanying CD with respect to the rules 

outlined for Experiment 2 in Chapter 3.  Note that this block size schedule will cover all 

the examples shown in Table 2, and covers all examples found for this range in the raw 

data. 
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Table 2.    Experimental block size schedules as a function of error rate 

 
 

 The number of passes performed with a block size of 8 bits is generally 

proportional to the error rate, as can be seen in Figure 14. 

 

Figure 14. Number of passes with 8 bit blocks relative to error rate 

However, the number of passes performed with a block size other than 8 bits is not 

generally proportional to the error rate.  This result can be seen in Figure 15. 
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Figure 15. Number of passes with 16 bit blocks relative to error rate 

It is interesting to note the correlation between the data presented in Figures 14 and 15.  

Particularly, transitions in the number of passes using a block size of 16 bits from one 

pass to no passes occurs when the number of passes using a block size of 8 bits increases.  

This speaks to the correction power of an additional pass with a block size of 8 bits 

reducing the need for a pass with a block size of 16 bits. 

 Using the experimental results from the dynamic selection method, the ideal block 

size schedules were derived and are summarized in Table 3.  The error rate ranges in the 

first column of Table 3 specifies the range of error rates for which the corresponding 

block size schedule should be used.  Of interest is the increasing tendency of the number 

of passes using 8-bit blocks.  Also, most block sizes were used for only one pass or less 

before switching to a larger block size. 

 Finally, the throughputs of the two phases are shown among other data in Figure 

16.  The values are compared with the throughput of a non-adaptive block size selection  
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Table 3.    Ideal block size schedules for error rates 0 - 20% 

 
 

method as well as the upper bound on throughput for any reconciliation protocol.  

Throughput is defined to be the amount of remaining data after performing reconciliation, 

and thus the bound on throughput is derived from the fraction of bits discarded divided 

by the total number of input bits.  The bound was determined in (Kollmitzer & Pivk, 

2010).  Interestingly, the large jumps in Figure 16 are correlated with the increase in 

number of passes with a block size of 8-bits; compare the position of the jumps with 

Figure 14.  It is readily seen that the adaptive method for selecting block size schedules 

performs better in terms of throughput than the non-adaptive selection method.  

Furthermore, the dynamic selection method and the lookup selection method perform 
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very similarly.  Finally, as the error rate approaches 20% the throughput of the adaptive 

method approaches the throughput of the non-adaptive method.  This result can be 

explained by referencing Table 3, which demonstrates that the number of passes using an 

8-bit block size generally tends to overshadow the number of passes using other block 

sizes as the error rate increases. 

 
 

Figure 16. Throughput for Winnow 

 

4.2.1. Experiment 2 Variant. 

 Using the same methodology described in the primary setup for Experiment 2, a 

different error rate estimation technique was employed to attempt to anticipate changes in 

the data.  This method still relies on assumptions of a random error distribution, though it 

accounts for errors likely to be eliminated by privacy maintenance and Hamming 
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syndromes, as well as the potential for errors to be introduced when the number of errors 

per block is odd and three or larger.  Between Experiment 2 and Experiment 2 Variant, 

the dynamic block size selection method of Experiment 2 Variant performed best in 

terms of throughput.  The throughputs of both dynamic selection methods are plotted 

together in Figure 16.  The other plots are described in the previous section. 

The block size schedules determined in Experiment 2 Variant, shown in Table 4, 

vary slightly from the ones shown in Table 3.  Of particular note is the reduced usage of 

8-bit blocks, which increases the throughput of the algorithm at higher error rates.  

Furthermore, the method employed in Experiment 2 Variant led to a smoothing of the 

throughput curve.  This can be attributed to the more effective use of larger block sizes 

by the algorithm employed in Experiment 2 Variant.  For example, at the 9-10% error 

rate range, the Experiment 2 algorithm chose 8-bit blocks three times, whereas the 

Variant selected 8-bit blocks twice and rather than a third pass with 8-bit blocks added  a 

pass with 64-bit blocks, thus wasting less bits for uneeded parity calculations.  This 

impacted the throughput of the algorithm by approximately 2%, which is visible in the 

throughput plot shown in Figure 16. 

 The data presented in this section answers the following questions: 

How can Alice and Bob choose an efficient block-size schedule given an estimated 

initial error rate?  What are efficient block size choices? 

One way, the proposed method, is to choose the block size such that the 

probability that any block contains exactly one error is maximal.  Because Winnow is 

based on Hamming codes, which are single error correcting codes, it follows that Winnow 

performs best when a block contains one error.  Furthermore, if a block does not contain  
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Table 4.    Variant-generated ideal block size schedules for Winnow 

 
 

exactly one error, it would be best if blocks contain 3 or more errors with only a very 

small likelihood, as errors will be introduced due to blocks containing an odd number of 

errors greater than 1.  Maximizing the number of blocks containing exactly one error is 

accomplished by finding the block size that maximizes the binomial probability that a 

block contains exactly one error, given the most current estimated error rate.  Finally, the 

error rate estimate can be made more realistic by estimating the number of errors 

corrected before the next pass, which necessarily affects the size of the block that should 

be used next. 
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Block size schedules generated by the proposed method are detailed in Table 3, 

and block size schedules generated by the second method, which includes estimating the 

number of errors corrected by a given pass, are given in Table 4. 

4.3. Experiment 3: Effects of Error Distribution on Winnow 

4.3.1. No permutation applied prior to the first pass. 

 For the first portion of Experiment 3, the sifted keys were not permuted prior to 

the first pass of Winnow.  As expected, the algorithm still performed well for randomly 

distributed errors, and corrected all errors with the typical throughput and in the typical 

amount of time.  However, introducing burst errors into Bob‟s sifted key led to utter 

failure of the protocol.  This was mainly caused by the failure of the error estimation 

method, as can be seen by correlating the difference between the estimated and actual 

error rates with the number of errors left after Winnow.  Refer to Figure 17 for a 

visualization of this result for single burst errors. 

The error rate was typically underestimated; this is to be expected, because burst 

errors will tend to mask each other and thus not be considered in the parity-based error 

estimation.  Furthermore, as the error rate estimation deviated much further than 1% from 

the actual error rates the number of errors not corrected by Winnow increased.  The data 

in Figure 15 represents the data produced by single burst errors with no permutation 

applied prior to performing Winnow.  The outcome for periodic burst errors was far 

worse, and could not be presented graphically in a useful manner.  In general the error 

rate estimation was approximately 0%, as all errors masked each other for estimation, and 

thus too weak a block schedule was chosen a majority of the time; almost all errors 

remained uncorrected for non-permuted periodic burst errors. 
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Figure 17. Remaining errors as a function of error rate estimation difference 

 

4.3.2. Applying a permutation prior to the first pass. 

 Applying a random permutation before the first pass rectified these shortcomings; 

in all but one trial out of 5,000 total trials for single burst errors, and all but two trials out 

of 5,000 total trials for periodic burst errors, Winnow was able to correct all errors.  The 

permutation did not affect the performance of Winnow for randomly distributed errors. 

Figure 18 shows the throughput for Winnow for inputs with randomly distributed errors, 

inputs with single burst errors, and inputs with periodic burst errors and with a random 

permutation applied prior to the first pass.  The burst size for the burst error patterns in 

Figure 18 is the largest used for experimentation, namely 10% of all errors. 
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Figure 18. Throughput for Winnow with different error distributions 

To summarize, Winnow performs extremely poorly for burst error distributions 

unless a random permutation is applied prior to the first pass.  Permuting the sifted keys 

randomly prior to reconciliation fixes the failure of Winnow in nearly all trials, and does 

not adversely affect the performance of Winnow for randomly distributed errors. 

 The data presented in this section answers the following questions: 

What effect do burst errors have on the operation of the Winnow protocol? 

Single burst errors and periodic burst errors do affect the operation of the Winnow 

protocol when no permutation is applied to the bits prior to the first pass.  In most cases, 

these types of error distributions affect the error rate estimation, causing too low an 

estimate by reducing the number of blocks exhibiting parity errors in Equation 4.  If the 

error rate is estimated too low, then an inappropriately low-powered block-size schedule 

will be selected and Winnow will fail to correct all errors.  For periodic burst error 

distributions, Winnow almost always estimated an error rate of 0%.  For burst error 
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distributions, the estimation deviated by an amount that was generally related to the size 

of the burst.  The number of errors not corrected at the end of Winnow as a function of 

error rate deviation can be seen in Figure 17 for single burst errors with three different 

burst sizes. 

Are these types of error distributions mitigated by shuffling the sifted key prior to 

the first pass of Winnow? 

 It appears that they are, and that errors that are normally distributed prior to such a 

permutation strategy are not rearranged into a burst or otherwise harmful distribution.  

This result is to be expected, as Winnow performs best when errors are randomly 

distributed. 
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V. Conclusions 

 

Current methods for secure communication include symmetric protocols and 

asymmetric protocols.  Asymmetric protocols, or public key protocols, are typically used 

to distribute key material for use in symmetric key protocols.  The asymmetric protocols 

of today generally rely on the computational unfeasibility of performing difficult 

mathematical operations, so-called trapdoor functions.  Many of these mathematically 

hard problems, to include factoring semiprimes and computing discrete logarithms, have 

been solved for quantum computers and as the prospect of quantum computing becomes 

increasingly promising, the need for a more secure means by which to distribute key 

material becomes increasingly apparent.  While “post-quantum” cryptographic protocols 

address this issue using classical components, several quantum key distribution (QKD) 

protocols also exist with a security foundation based on generally accepted laws of 

quantum physics. 

These QKD protocols are still quite nascent, and as such the ideal assumptions of 

ideal components have yet to be realized.  One consequence of this shortcoming is the 

addition of an error correction phase inserted into a QKD protocol in order to ensure that 

the communicating parties share a common final key.  One such protocol which enjoys a 

relatively small communication complexity is called Winnow, and this research addresses 

the issue of finding ideal block sizes for use in the Winnow reconciliation protocol. 

In one competing protocol, Cascade, it is suggested that the communicating 

parties publicly compare a subset of their bits in order to estimate the error rate of the 
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sifted keys prior to error reconciliation.  Buttler et al. argue that this isn‟t necessary and 

propose an alternative means of error estimation, under the assumption that errors are 

normally distributed.  This error rate estimation technique performs extremely well, and 

the communicating parties can increase the accuracy of the method by increasing the 

number of bits in the sifted key prior to error estimation.  In fact, if the communicating 

parties accrue two million bits of sifted key before estimating the error rate, then the 

estimation will on average be within a factor of 0.5% of the actual error rate, which is 

sufficiently close to reduce the probability of failure of Winnow to a negligible amount.  

Furthermore, by randomly permuting the bits prior to the first pass of Winnow, the 

communicating parties can ensure the maximal effectiveness of the error estimation 

technique, and of the Winnow protocol. 

 While the normal distribution of errors is central to the effective operation of 

Winnow, the selection of block sizes used by the protocol is also quite important.  For 

blocks containing an even number of errors, a parity bit is unnecessarily sent and thus 

discarded.  For blocks containing an odd number of errors greater than 1, Winnow can 

actually introduce errors.  Therefore an ideal block contains exactly one error.  This fact 

can be exploited to select ideal block sizes, once an error rate is known.  That is, once the 

communicating parties have a decent estimation of the number of errors in their sifted 

keys, they can use Equation 7 to determine the best block size for a given error rate, or 

similarly Equation 8 to determine the best error rate for each block size that is suitable for 

use in Winnow.  Figure 19 demonstrates the concept of too large or too small a block size.  

This research provides a methodology for an adaptive block size selection scheme, and 

the results are summarized in Table 3 and Table 4. 
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Figure 19. Visual representation of ideal block size 

 Winnow performs well with normally distributed errors, but due to the fact that 

burst errors can be introduced into the channel by environmental interference and other 

sources of both periodic and asymmetric noise, a study of the effect of burst errors on the 

operation of Winnow is treated in this research.  Of particular interest are single burst 

errors, in which a controlled percentage of errors occur in a large burst and the rest of the 

errors occur randomly around the burst, and periodic burst errors, in which all errors 

occur in burst distributed in regular intervals in Bob‟s sifted key.  Winnow has the ability 

to recover from single burst errors in this scenario unless the error rate estimation 

deviates by more than a factor of one percent from the actual error rate.  This can be seen 

visually in Figure 20.  Periodic burst error patterns lead to the complete failure of 

Winnow.  Applying a random permutation to the sifted keys prior to performing Winnow 

fixes this shortcoming, and in the experiments performed for this work applying a 

random permutation prior to the first pas of Winnow led to throughputs for periodic and 

single burst error patterns which were similar to the throughput for normally distributed 

errors. 
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Figure 20. Failure of Winnow with single burst errors, no initial permutation 

 

5.1. Recommendations for Future Research 

The experiments designed in this research admit limitations, and each of these 

limitations can be used to identify areas for future research to further improve Winnow 

and characterize its strengths and weaknesses. The following list identifies areas for 

improving this work with regards to studying Winnow. 

1. Improving the variant used in Experiment 2 

Experiment 2 admits that there is a shortcoming in using error rate estimates 

for selecting the best next block size, and addresses this issue by employing a 

naïve mechanism for estimating the number of errors expected to be corrected 

and introduced in the current pass.  This estimation mechanism is currently 

only used for a block size of 8-bits for simplicity, and is a stub in the author‟s 

current implementation of Winnow for other block sizes.  This estimation 
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mechanism can be generalized to include other block sizes, which would 

likely improve the overall throughput of the Winnow protocol. 

2. A study of a wider selection of block sizes 

In the seminal research on Winnow, Buttler et al. use block sizes of 8 bits 

through 256 bits.  This research uses block sizes of 8 bits through 1024 bits, 

the idea being that a larger block would be more suitable because less parity 

bits would be exchanged for very low error rates.  It would be interesting to 

determine the point at which the block size becomes too large, that is, the 

number of bits sent in syndromes is larger than the number of unnecessary 

parity bits sent.  This information can be used to bound the maximum block 

size.  Indeed, a bound is needed on the maximum block size, because if the 

block size exceeds the number of bits in the sifted key Winnow will not 

function properly. 

3. Verification of definition of “ideal block size” 

This author‟s definition of ideal block size assumes that the ideal block 

contains exactly one error.  However, the ideal block may in fact contain less 

or more than zero errors on average.  For example, the authors of Cascade 

experimentally determined that the ideal block contains approximately 0.69 

errors on average, while intuitively one might reason that exactly one error per 

block might be ideal.  An experimental characterization of the definition of 

ideal block size for Winnow would be of interest. 
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4. C++ implementation improvements 

Winnow is highly conducive to multithreading, as most of its operations can 

be done in parallel.  The author‟s implementation does not exploit this 

property, and a parallelizable implementation would likely improve the speed 

of Winnow dramatically.  Also, the author‟s implementation of matrix 

multiplication for producing syndromes is not as fast as it could be.  A speed 

increase could be seen by computing the parity of each row of the parity-

check matrix logical AND’ed with each block of sifted key. 

5. Comparison with other error reconciliation protocols 

Winnow is one protocol of many designed to address the issue of error 

reconciliation in QKD.  A detailed comparison of Winnow with these 

protocols, for example Turbo Codes and Low Density Parity Check Codes, 

would be valuable in determining the benefits and weaknesses of each. 
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Appendix A: Sample BB84 Key Distribution 
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Appendix B: Additional Analyses 

 

Time Complexity 

The time it takes for Winnow to completely eliminate all errors appears to scale 

linearly with sifted key length.  The error rate is, of course, also a factor as the error rate 

determines the number of passes Winnow requires to correct all errors.  To test the 

complexity, Winnow was performed on a sifted key with error rates of 1%-20% and 

sifted key length of 100,000 bits through 10,000,000 bits.  For each percentage and length 

combination, an average run time was calculated in seconds from 10 trials.  The graph 

below shows the averages of times for all twenty error rates and each sifted key length.  

The data showing each individual error rate for each sifted key length can be found on the 

accompanying CD along with the data used to generate the graph below. 
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Communication Complexity 

 Communication complexity of a reconciliation protocol for use in a quantum key 

system can be defined in two ways: 

 The number of messages passed between Alice and Bob 

 The number of bits sent between Alice and Bob 

Using the first definition, the number of messages passed between Alice and Bob 

increases linearly with error rate, if Winnow is performed using the block sizes 

determined in Experiment 2 in this research (see Table 3).  This is due to the fact that 

higher error rates demand a higher number of passes, and each pass requires exactly two 

messages to be sent between Alice and Bob. A comparison is shown below between the 

error rate and number of messages sent between Alice and Bob. 

 

 Using the second definition, the number of bits sent between Alice and Bob, we 

can draw a comparison between this curve and the theoretical minimum determined in 
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(Kollmitzer & Pivk, 2010).  The number of bits sent follows a nice curve, as shown 

below.  Note that the number of bits sent with respect to the size of the input is not 

interesting, as these numbers will most certainly be proportional.  It is the effect of the 

error rate that is most interesting. 

 

The data for both communication complexity graphs was taken from the data 

collected for Experiment 2.  Note that the number of bits sent over the wire is the number 

of bits exposed to an eavesdropper. 
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Appendix C: Bit Buffer Class Code 

/* 
 * BitBuffer.h 
 * 
 * Created on: Mar 28, 2011 
 *   Author: Kevin Lustic 
 *   
 *  This code can be found on the accompanying disc as well. 
 */ 
 
 
#ifndef BITBUFFER_H_ 
#define BITBUFFER_H_ 
 
//#define using_bitmask 
 
 
class BitBuffer { 
public: 
 BitBuffer(); 
 BitBuffer(unsigned int); // constructor 
 virtual ~BitBuffer(); 
 
 unsigned int getBit(unsigned int); 
 unsigned int getParity(unsigned int, unsigned int); 
 unsigned int getLength(); 
 unsigned int getSeed(); 
 
 void setBit(unsigned int); 
 void clearBit(unsigned int); 
 void flipBit(unsigned int); 
 void setLength(unsigned int); 
 void setSeed(unsigned int); 
 
 void printBuffer(); 
 void removeBit(unsigned int); 
 void permuteBuffer(); 
 void newPermutation(); 
 
private: 
 unsigned int *_buffer; 
 unsigned int *_length; 
 unsigned int *_seedVal; 
 
 void ClearBuffer(void); 
 
 #ifdef using_bitmask 
 unsigned int *_bitMask; 
 void InitializeBitMask(void); 
 #endif 
}; 
 
#endif 
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/* 
 * BitBuffer.cpp 
 * 
 * Created on: Mar 28, 2011 
 *   Author: Kevin Lustic 
 *   
 *  This code can be found on the accompanying disc as well. 
 */ 
 
 
#define using_shifts  // Use shifts for bit manipulation 
//#define using_bitmask  // Use bitmasks for bit manipulation 
#define enable_debug_mode // Enable comments such as bounds checking 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include "BitBuffer.h" 
 
#define BITS_PER_WORD  32 // Set bits per word according to architecture (32- 
or 64-bit) 
#define BYTES_PER_WORD  (unsigned int)(BITS_PER_WORD/8) 
#define MAX_BUFFER_ELEMENTS  4096 
#define MAX_BITS  (MAX_BUFFER_ELEMENTS*BITS_PER_WORD) 
 
BitBuffer::BitBuffer() { 
 printf("You've used the default constructor. You should use the other 
constructor.\n"); 
} 
 
BitBuffer:: BitBuffer(unsigned int size) { 
 _length = new unsigned int(size); 
 
 srand(time(NULL)); 
 _seedVal = new unsigned int(0); //random seed for permutation 
 
 _buffer = new unsigned int[*_length/BITS_PER_WORD+1]; 
 ClearBuffer(); 
 
 #ifdef using_bitmask 
 _bitMask = new unsigned int [64]; 
 InitializeBitMask(); 
 #endif 
} 
 
BitBuffer::~BitBuffer() { 
 delete _length; 
 delete _buffer; 
 delete _seedVal; 
 
 #ifdef using_bitmask 
 delete _bitMask; 
 #endif 
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} 
 
unsigned int BitBuffer::getLength() { 
 return *_length; 
} 
 
void BitBuffer::setLength(unsigned int size) { 
 _length = new unsigned int (size); 
} 
 
unsigned int BitBuffer::getSeed() { 
 return *_seedVal; 
} 
 
void BitBuffer::setSeed(unsigned int seed) { 
 _seedVal = new unsigned int (seed); 
} 
 
 
//////////////////////////// Start methodology-dependent functions 
//////////////////////////////// 
 
#ifdef using_shifts 
 
unsigned int BitBuffer::getBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In getBit: index out of bounds. Returning 0.\n"); 
  return 0; 
 } 
 #endif 
 
 return (_buffer[index/BITS_PER_WORD]>>(index%BITS_PER_WORD))&0x1; 
} 
 
void BitBuffer::setBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In setBit: index out of bounds. Returning 0.\n"); 
  return; 
 } 
 #endif 
 
 _buffer[index/BITS_PER_WORD] |= 1<<(index%BITS_PER_WORD); 
 
 return; 
} 
 
void BitBuffer::clearBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In clearBit: index out of bounds. Returning 0.\n"); 
  return; 
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 } 
 #endif 
 
 _buffer[index/BITS_PER_WORD] &= ~(1 << (index%BITS_PER_WORD)); 
 return; 
} 
 
void BitBuffer::flipBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In clearBit: index out of bounds. Returning 0.\n"); 
  return; 
 } 
 #endif 
 
 _buffer[index/BITS_PER_WORD] ^= 1<<(index%BITS_PER_WORD); 
 
 return; 
} 
 
#endif // for using bit shifts for manipulation 
 
#ifdef using_bitmask 
 
unsigned int BitBuffer::getBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In getBit: index out of bounds. Returning 0.\n"); 
  return 0; 
 } 
 #endif 
 
 unsigned int Element = index / BITS_PER_WORD; 
 unsigned int Bit = index % BITS_PER_WORD; 
 
 if(_buffer[Element]&_bitMask[Bit]) 
  return 1; 
 
 else 
  return 0; 
} 
 
void BitBuffer::setBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In setBit: index out of bounds. Returning 0.\n"); 
  return; 
 } 
 #endif 
 
 unsigned int Element = index / BITS_PER_WORD; 
 unsigned int Bit = index % BITS_PER_WORD; 
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 _buffer[Element] |= _bitMask[Bit]; 
 
 return; 
} 
 
void BitBuffer::clearBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In clearBit: index out of bounds. Returning 0.\n"); 
  return; 
 } 
 #endif 
 
 unsigned int Element = index / BITS_PER_WORD; 
 unsigned int Bit = index % BITS_PER_WORD; 
 
 _buffer[Element] &= (~_bitMask[Bit]); 
 
 return; 
} 
 
void BitBuffer::flipBit(unsigned int index) { 
 #ifdef enable_debug_mode 
 if(index >= *_length) { 
  printf("In flipBit: index out of bounds. Returning 0.\n"); 
  return; 
 } 
 #endif 
 
 unsigned int Element = index / BITS_PER_WORD; 
 unsigned int Bit = index % BITS_PER_WORD; 
 
 if(_buffer[Element] & _bitMask[Bit]) 
  _buffer[Element] &= (~_bitMask[Bit]); 
 
 else 
  _buffer[Element] |= _bitMask[Bit]; 
 
 return; 
} 
 
#endif 
 
//////////////////////////////// End methodology-dependent functions 
//////////////////////////////// 
 
/* 
 * getParity(start,end) 
 */ 
unsigned int BitBuffer::getParity(unsigned int start, unsigned int finish) { 
 #ifdef enable_debug_mode 
 if(start >= *_length || finish >= *_length || finish<start) { 
  printf("In getParity: improper bounds. Returning 0.\n"); 
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  printf("start/end is %d/%d\n",start,finish); 
 
  return 0; 
 } 
 #endif 
 
 unsigned int parity=0; 
 unsigned int startInt=0, endInt=0; 
 unsigned int startIndex = start/BITS_PER_WORD; 
 unsigned int endIndex = finish/BITS_PER_WORD; 
 
 // set all bits 
 unsigned int startMask=~0; 
 unsigned int endMask=~0; 
 
 endMask >>= ((endIndex+1)*BITS_PER_WORD-finish-1); 
 endInt = _buffer[endIndex] & endMask; 
 
 startMask <<= (start-(startIndex)*BITS_PER_WORD); 
 startInt = _buffer[startIndex] & startMask; 
 
 if(startIndex == endIndex) { 
  startMask &= endMask; 
  parity ^= _buffer[startIndex] & startMask; 
 } 
 
 else { 
  parity ^= startInt; 
  for(unsigned int i=startIndex+1; i<endIndex; i++) 
   parity ^= _buffer[i]; 
  parity ^= endInt; 
 } 
 
 for(unsigned int i=BITS_PER_WORD/2; i>=1; i/=2) { 
  parity = parity ^ (parity >> i); 
 } 
 
 return parity & 0x1; 
} 
 
// Bits located at index i in _permutation will be switched to index 
_permutation[i] 
void BitBuffer::permuteBuffer() { 
 srand(*_seedVal); 
 unsigned int oldIndex = 0; 
 unsigned int newIndex = 0; 
 unsigned int tempNew,tempOld; 
 unsigned int mask1=0, mask2=0; 
 unsigned int length = *_length; 
 
 // construct permuted bit buffer 
 for(unsigned int counter=0; counter < length; counter++) { 
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  oldIndex = counter; 
  newIndex = (unsigned int)((double)rand()/RAND_MAX * length); 
 
  mask1 = ~0 ^ (1 << (newIndex%BITS_PER_WORD)); 
  tempNew = _buffer[newIndex/BITS_PER_WORD] & mask1; 
  mask1 = ~mask1; 
  tempNew |= (_buffer[oldIndex/BITS_PER_WORD] & mask1); 
 
  mask2 = ~0 ^ (1 << (oldIndex%BITS_PER_WORD)); 
  tempOld = _buffer[oldIndex/BITS_PER_WORD] & mask2; 
  mask2 = ~mask2; 
  tempOld |= (_buffer[newIndex/BITS_PER_WORD] & mask2); 
 
  _buffer[newIndex/BITS_PER_WORD] = tempNew; 
  _buffer[oldIndex/BITS_PER_WORD] = tempOld; 
 } 
 
 return; 
} 
 
void BitBuffer::printBuffer() { 
 #ifdef enable_debug_mode 
 if(*_length > 100) { 
  printf("Buffer larger than 100 bits, you probably don't want this 
printed.\n"); 
  return; 
 } 
 #endif 
 
 for(unsigned int i=0; i < *_length; i++) { 
  printf("%d", getBit(i)); 
 } 
 printf("\n"); 
 
 return; 
} 
 
void BitBuffer::ClearBuffer(void) { 
 for(unsigned int i=0; i<*_length/BITS_PER_WORD; i++) 
  _buffer[i]=0; 
} 
 
#ifdef using_bitmask 
 
void BitBuffer::InitializeBitMask(void) { 
#if BYTES_PER_WORD==4 
 _bitMask[0]= 0x00000001; 
 _bitMask[1]= 0x00000002; 
 _bitMask[2]= 0x00000004; 
 _bitMask[3]= 0x00000008; 
 _bitMask[4]= 0x00000010; 
 _bitMask[5]= 0x00000020; 
 _bitMask[6]= 0x00000040; 



85 

 

 

 _bitMask[7]= 0x00000080; 
 _bitMask[8]= 0x00000100; 
 _bitMask[9]= 0x00000200; 
 _bitMask[10]=0x00000400; 
 _bitMask[11]=0x00000800; 
 _bitMask[12]=0x00001000; 
 _bitMask[13]=0x00002000; 
 _bitMask[14]=0x00004000; 
 _bitMask[15]=0x00008000; 
 _bitMask[16]=0x00010000; 
 _bitMask[17]=0x00020000; 
 _bitMask[18]=0x00040000; 
 _bitMask[19]=0x00080000; 
 _bitMask[20]=0x00100000; 
 _bitMask[21]=0x00200000; 
 _bitMask[22]=0x00400000; 
 _bitMask[23]=0x00800000; 
 _bitMask[24]=0x01000000; 
 _bitMask[25]=0x02000000; 
 _bitMask[26]=0x04000000; 
 _bitMask[27]=0x08000000; 
 _bitMask[28]=0x10000000; 
 _bitMask[29]=0x20000000; 
 _bitMask[30]=0x40000000; 
 _bitMask[31]=0x80000000; 
#elif BYTES_PER_WORD == 8 
 _bitMask[0]= 0x0000000000000001; 
 _bitMask[1]= 0x0000000000000002; 
 _bitMask[2]= 0x0000000000000004; 
 _bitMask[3]= 0x0000000000000008; 
 _bitMask[4]= 0x0000000000000010; 
 _bitMask[5]= 0x0000000000000020; 
 _bitMask[6]= 0x0000000000000040; 
 _bitMask[7]= 0x0000000000000080; 
 _bitMask[8]= 0x0000000000000100; 
 _bitMask[9]= 0x0000000000000200; 
 _bitMask[10]=0x0000000000000400; 
 _bitMask[11]=0x0000000000000800; 
 _bitMask[12]=0x0000000000001000; 
 _bitMask[13]=0x0000000000002000; 
 _bitMask[14]=0x0000000000004000; 
 _bitMask[15]=0x0000000000008000; 
 _bitMask[16]=0x0000000000010000; 
 _bitMask[17]=0x0000000000020000; 
 _bitMask[18]=0x0000000000040000; 
 _bitMask[19]=0x0000000000080000; 
 _bitMask[20]=0x0000000000100000; 
 _bitMask[21]=0x0000000000200000; 
 _bitMask[22]=0x0000000000400000; 
 _bitMask[23]=0x0000000000800000; 
 _bitMask[24]=0x0000000001000000; 
 _bitMask[25]=0x0000000002000000; 
 _bitMask[26]=0x0000000004000000; 
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 _bitMask[27]=0x0000000008000000; 
 _bitMask[28]=0x0000000010000000; 
 _bitMask[29]=0x0000000020000000; 
 _bitMask[30]=0x0000000040000000; 
 _bitMask[31]=0x0000000080000000; 
 _bitMask[32]=0x0000000100000000; 
 _bitMask[33]=0x0000000200000000; 
 _bitMask[34]=0x0000000400000000; 
 _bitMask[35]=0x0000000800000000; 
 _bitMask[36]=0x0000001000000000; 
 _bitMask[37]=0x0000002000000000; 
 _bitMask[38]=0x0000004000000000; 
 _bitMask[39]=0x0000008000000000; 
 _bitMask[40]=0x0000010000000000; 
 _bitMask[41]=0x0000020000000000; 
 _bitMask[42]=0x0000040000000000; 
 _bitMask[43]=0x0000080000000000; 
 _bitMask[44]=0x0000100000000000; 
 _bitMask[45]=0x0000200000000000; 
 _bitMask[46]=0x0000400000000000; 
 _bitMask[47]=0x0000800000000000; 
 _bitMask[48]=0x0001000000000000; 
 _bitMask[49]=0x0002000000000000; 
 _bitMask[50]=0x0004000000000000; 
 _bitMask[51]=0x0008000000000000; 
 _bitMask[52]=0x0010000000000000; 
 _bitMask[53]=0x0020000000000000; 
 _bitMask[54]=0x0040000000000000; 
 _bitMask[55]=0x0080000000000000; 
 _bitMask[56]=0x0100000000000000; 
 _bitMask[57]=0x0200000000000000; 
 _bitMask[58]=0x0400000000000000; 
 _bitMask[59]=0x0800000000000000; 
 _bitMask[60]=0x1000000000000000; 
 _bitMask[61]=0x2000000000000000; 
 _bitMask[62]=0x4000000000000000; 
 _bitMask[63]=0x8000000000000000; 
#endif 
} 
 
#endif 
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Appendix D: Winnow Class Code 

/* 
 * Kevin Lustic 
 * Air Force Institute of Technology 
 * Winnow.cpp 
 * 
 *  Created on: Mar 18, 2011 
 *  Last Updated: Mar 30, 2011 
 *   
 *  This code can be found on the accompanying disc as well. 
 */ 
 
#ifndef WINNOW_H_ 
#define WINNOW_H_ 
 
#include "BitBuffer.h" 
 
class Winnow { 
public: 
 Winnow(); 
 Winnow(BitBuffer *, unsigned int); 
 virtual ~Winnow(); 
 
 int firstPass(); 
 int nextPass(); 
 double setBlockSchedule(unsigned int); 
 
 // Parity operation methods 
 void getParities(BitBuffer *); 
 void discardParityBits(); 
 unsigned int disagreeingBlockParities(BitBuffer *, BitBuffer *, int *); 
 
 // Syndrome operation methods 
 void printMatrix(); 
 void fixWithSyndrome(unsigned int, unsigned int); 
 void discardSyndromeBits (unsigned int); 
 void discardSyndromeBits (int *, unsigned int); 
 unsigned int getSyndrome(unsigned int); 
 
 // Misc getter methods 
 void getCurrentKey(BitBuffer *); 
 void getBlockSizeSchedule(unsigned int *); 
 unsigned int getCurrentKeyLength(); 
 unsigned int getBitsExposed(); 
 unsigned int getNetBitsExposed(); 
 unsigned int numRemainingErrors(BitBuffer *); 
 unsigned int getNumRemainingPasses(); 
 
 // BitBuffer wrappers 
 void setSeedValue(unsigned int); 
 unsigned int getSeedValue(); 
 
private: 
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 bool _setterLocked; 
 BitBuffer *_keyString; 
 unsigned int _blockSize; 
 unsigned int _numOfBlocks; 
 unsigned int _bitsExposed; 
 unsigned int _netBitsExposed; 
 unsigned int _syndromeLength; 
 unsigned int *_blockSizeSchedule; 
 unsigned int **_parityCheckMatrix; 
 
 void createMatrix(); 
}; 
 
#endif /* WINNOW_H_ */ 
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/* 
 * Kevin Lustic 
 * Air Force Institute of Technology 
 * Winnow.cpp 
 * 
 *  Created on: Mar 18, 2011 
 *  Last Updated: May 18, 2011 
 *   
 *  This code can be found on the accompanying disc as well. 
 */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "Winnow.h" 
 
#define permute_bits_before_first_pass 
#define permute_bits_between_passes 
 
 
Winnow::Winnow() { 
 printf("Default constructor for Winnow... use other constructor.\n"); 
} 
 
/* 
 * The constructor 
 * 
 * Input: Sifted key 
 * 
 * - Initializes the Winnow class's member bit buffer 
 * - Sets block size to 8 bits, for initial error estimation 
 * - Sets bits exposed and net bits exposed to 0. These track Eve's info gain 
from Winnowing * 
 */ 
Winnow::Winnow(BitBuffer *rawKey, unsigned int permSeed) { 
 _keyString = rawKey; 
 _keyString->setSeed(permSeed); 
 
 _bitsExposed = 0; 
 _netBitsExposed = 0; 
 _setterLocked = false; 
 
// _blockSizeSchedule = new unsigned int[8]; 
 
} 
 
Winnow::~Winnow() {} 
 
/* 
 * Winnow::firstPass 
 * 
 * Prepares for the first pass. This includes initializing the block size 
schedule, 
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 * determining the initial blocksize, syndrome length, and number of blocks, 
and 
 * generating the parity-check matrix. 
 */ 
int Winnow::firstPass() { 
 
 // For the first pass, we will always choose a block size of 8 
 _syndromeLength = 3; 
 _blockSize = 8; 
 
 // Note that this number does not include an incomplete final block 
 _numOfBlocks = _keyString->getLength()/_blockSize; 
 
 // Generation of the parity-check matrix 
 createMatrix(); 
 
 // Permute the bits in the key buffer 
 #ifdef permute_bits_before_first_pass 
 _keyString->permuteBuffer(); 
 #endif 
 
 return 0; 
} 
 
/* 
 * Winnow::nextPass 
 * 
 * Before the next pass of Winnow is performed this function is called. This 
function 
 * adjusts the blocksize according the schedule, creates the new parity check 
matrix and 
 * adjusts any other values related to the block size. 
 */ 
int Winnow::nextPass() { 
 
 for(int i=0; i<8; i++) { 
  if(_blockSizeSchedule[i] > 0) { 
   _syndromeLength = (unsigned int)(i+3); 
   _blockSize = 1<<_syndromeLength; 
   _blockSizeSchedule[i]--; 
   break; 
  } 
  else if (i>=7) { 
   // We reached end of schedule with no block choices left 
   printf("Time to terminate.\n"); 
   return (-1); 
  } 
 } 
 
 _numOfBlocks = _keyString->getLength()/_blockSize; 
 createMatrix(); 
 
 // Permute the bits in the key buffer 
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 #ifdef permute_bits_between_passes 
 _keyString->permuteBuffer(); 
 #endif 
 
 return 0; 
} 
 
 
/* 
 * Winnow::getCurrentKeyLength() 
 * 
 * Output: Length of the current key. 
 */ 
unsigned int Winnow::getCurrentKeyLength() { 
 return _keyString->getLength(); 
} 
 
 
/* 
 * Winnow::getNumRemainingPasses 
 * 
 * Output: Number of passes left 
 * 
 * Returns the number of passes left according to block schedule. This 
function 
 * is responsible for the termination of the algorithm. 
 */ 
unsigned int Winnow::getNumRemainingPasses() { 
 unsigned int count=0; 
 
 for(int i=0; i<8; i++) 
  count += _blockSizeSchedule[i]; 
 
 return count; 
} 
 
/* 
 * Winnow::getParities 
 * 
 * Input:  BitBuffer * 
 * Output: void 
 * 
 * Gets the parities for each of the blocks, and stores them in the BitBuffer 
 * that is passed by reference. The indices of the bit buffer correspond to 
the 
 * block number of the parity bit stored there. 
 */ 
void Winnow::getParities(BitBuffer *parityBuffer) { 
 parityBuffer->setLength(_numOfBlocks); 
 
 unsigned int start=0, end=0; 
 unsigned int parity=0; 
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 // Iterate through the blocks. Note we ignore the last block if it is 
not a full block. 
 for(unsigned int i=0; i < _numOfBlocks; i++) { 
  start = i*_blockSize; 
  end = start+_blockSize-1; 
 
  parity = _keyString->getParity(start,end); // Parity of bits from 
start->end, inclusive 
 
  // Each parity bit is counted as a bit exposed 
  _bitsExposed++; 
  _netBitsExposed++; 
 
  // Update our parity buffer 
  if(parity==1) 
   parityBuffer->setBit(i); 
  else { 
   parityBuffer->clearBit(i); 
  } 
 } 
 
 return; 
} 
 
/* 
 * Winnow::disagreeingBlockParities 
 * 
 * Input:  Alice's parity buffer, Bob's parity buffer, array of integers 
 * Output: The number of blocks containing an odd number of errors 
 * 
 * Determines the block numbers of blocks where Alice and Bob's parities do 
not match, 
 * and store those block numbers in the array of integers (the third 
argument). 
 */ 
unsigned int Winnow::disagreeingBlockParities(BitBuffer *aliceParities, 
BitBuffer *bobParities, int *mismatches) { 
 unsigned int counter = 0; 
 
 // Ensure we are passed valid buffers to compare 
 if(aliceParities->getLength() != bobParities->getLength()) { 
  printf("Incompatible buffers... cannot determine if they 
disagree.\n"); 
 } 
 
 else { 
  for(unsigned int i=0; i < aliceParities->getLength(); i++) { 
 
   // If Alice/Bob have parities that don't match, add the 
index (block #) to our list 
   if(aliceParities->getBit(i) != bobParities->getBit(i)) { 
    mismatches[counter]=i; 
    counter++; 
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   } 
  } 
 } 
 
 return counter; 
} 
 
 
/* 
 * Winnow::discardParityBits 
 * 
 * Input:  (void) 
 * Output: (void) 
 * 
 * Discards a bit from each block as a part of the Winnow privacy maintenance. 
This 
 * implementation discards the first bit from each block, for ease of coding. 
Discard 
 * is performed by copying the bits of each block which aren't part of the key 
string 
 * backwards. 
 * 
 * Note that the final block is ignored if incomplete. 
 */ 
void Winnow::discardParityBits() { 
 unsigned int newIndex=0; 
 
 for(unsigned int i=0; i<_keyString->getLength(); i++) { 
  if(i%_blockSize == 0 && i != _numOfBlocks*_blockSize) { 
   // We want to remove this bit. Do not copy it. 
   _netBitsExposed--; 
  } 
 
  // If it isn't the first bit in the block, copy it. 
  else { 
   if(_keyString->getBit(i)==1) 
    _keyString->setBit(newIndex); 
   else { 
    _keyString->clearBit(newIndex); 
   } 
   newIndex++; 
  } 
 } 
 
 // New block size, since we deleted one bit from each 
 _blockSize--; 
 
 // New length of key, since we delete one bit per block 
 _keyString->setLength(_keyString->getLength()-_numOfBlocks); 
 
 return; 
} 
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/* 
 * Winnow::createMatrix 
 * 
 * Function for generating the parity check matrix that Alice uses for 
computing 
 * syndromes, and that Bob uses for correcting errors. 
 */ 
 
void Winnow::createMatrix() { 
 int blockSize = (1<<_syndromeLength)-1; 
 
 _parityCheckMatrix = new unsigned int*[_syndromeLength]; 
 
 for(unsigned int i=0; i<_syndromeLength; i++) { 
  _parityCheckMatrix[i] = new unsigned int[blockSize]; 
 } 
 
 for(unsigned int i=0; i<_syndromeLength; i++) { 
  for(int j=1; j<=blockSize; j++) { 
   _parityCheckMatrix[i][j-1] = j/(1<<i) & 0x1; 
  } 
 } 
 
 return; 
} 
 
/* 
 * Winnow::getSyndrome 
 * 
 * Input:  The block number of the block for which to calculate the syndrome 
 * Output: The syndrome, in unsigned int form 
 * 
 * The syndrome is returned as an unsigned integer. The blocksize would have 
to 
 * be 2^32-1 to break this method, which is an unrealistic block size in 
practice. 
 * Unsigned integers for this purpose is less unwieldy than, say, a separate 
buffer 
 * for every syndrome. 
 * 
 * An example is a syndrome of '1 1 0' would be returned as '6' rather than a 
 * three-element buffer. 
 */ 
unsigned int Winnow::getSyndrome(unsigned int blockNumber) { 
 // Ensure the block number is legal 
 if(blockNumber > _numOfBlocks) { 
  printf("Illegal block number. Returning blockSize+1 for new 
syndrome.\n"); 
  return (_blockSize+1); 
 } 
 
 unsigned int temp=0; 
 unsigned int newSyndrome=0; 
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 // Compute the highest order bit of the syndrome first and work down 
 for(int i=_syndromeLength-1; i>=0; i--) { 
  newSyndrome <<= 1; // Push previous bit up 
 
  // Multiply the block by the (i-1)th row of the parity check 
matrix 
  for(unsigned int j=0; j<_blockSize; j++) { 
   temp = (temp + _parityCheckMatrix[i][j]*_keyString-
>getBit(blockNumber*_blockSize+j)) & 0x1; 
  } 
 
  newSyndrome += temp; // Add the resulting sum to the syndrome 
 
  temp=0; 
 } 
 
 // Number of bits exposed is equal to the number of bits in the syndrome 
 _bitsExposed+=_syndromeLength; 
 _netBitsExposed+=_syndromeLength; 
 
 return newSyndrome; 
} 
 
/* 
 * Winnow::fixWithSyndrome 
 * 
 * Input: the number of the block containing the error, Alice's syndrome of 
that block 
 * 
 * This is used by Bob. Bob computes the syndrome of his block, and xor's it 
with the 
 * syndrome from Alice. The result is an offset pointing to the exact location 
of the 
 * erroneous bit, if the first bit of the block is considered to be at 
position '1'. 
 */ 
void Winnow::fixWithSyndrome(unsigned int blockNumber, unsigned int syndrome) 
{ 
 // Get the syndrome of the corresponding block 
 unsigned int mySyndrome = this->getSyndrome(blockNumber); 
 
 // Store in syndromesyndrome the result of xor-ing the two syndromes. 
This will 
 // give an offset representing the location of the error to fix 
 syndrome ^= mySyndrome; 
 
 if(syndrome==0) { /* The error was discarded in the parity cleanup! */ } 
 
 else 
  _keyString->flipBit(blockNumber*_blockSize+(syndrome-1)); 
 
 return; 
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} 
 
/* 
 * Winnow::discardSyndromeBits 
 * 
 * Input: block numbers of the blocks for which to discard the bits, number of 
said blocks 
 * 
 * The bits at indices of the form 2^j-1 are removed. These correspond to the 
 * linearly independent columns of the parity check matrix. Note that this 
 * appears to be O(n^2) but the inner for loop is deceiving. This operation 
 * is just O(n). 
 */ 
void Winnow::discardSyndromeBits(int *errorBlocks, unsigned int length) { 
 unsigned int errorBlocksCounter=0, newCounter=0,oldCounter=0;  
 for(unsigned int i=0; i<_numOfBlocks; i++) { 
  if(errorBlocksCounter<length && errorBlocks[errorBlocksCounter] 
== (int)i) { 
   errorBlocksCounter++; 
   unsigned int power=0; 
 
   // Iterate through the block 
   for(unsigned int j=0; j<_blockSize; j++) { 
 
    if(j+1 == (unsigned int)(1<<power)) { 
     _netBitsExposed--; 
     power++; 
     oldCounter++; 
    } 
 
    else { 
     if(_keyString->getBit(oldCounter)) 
      _keyString->setBit(newCounter); 
     else { 
      _keyString->clearBit(newCounter); 
     } 
 
     newCounter++; 
     oldCounter++; 
    } 
   } // end for 
  } //end if 
 
  else { 
   if(_keyString->getBit(oldCounter)) 
    _keyString->setBit(newCounter); 
   else { 
    _keyString->clearBit(newCounter); 
   } 
   newCounter++; 
   oldCounter++; 
  } //end else 
 } //end for 
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 while (oldCounter < _keyString->getLength()) { 
  if(_keyString->getBit(oldCounter)) 
   _keyString->setBit(newCounter); 
  else { 
   _keyString->clearBit(newCounter); 
  } 
  newCounter++; 
  oldCounter++; 
 } 
 
 _keyString->setLength(newCounter); 
 
 return; 
} 
 
 
 
/* 
 * Winnow::getCurrentKey 
 * 
 * Input: BitBuffer pointer 
 * 
 * Copies the current key stored in _keyString into myBuf 
 */ 
void Winnow::getCurrentKey(BitBuffer *myBuf) { 
 myBuf = _keyString; 
 return; 
} 
 
/* 
 * Winnow::getBitsExposed 
 * 
 * Returns the gross number of bits exposed. 
 */ 
unsigned int Winnow::getBitsExposed() { 
 return _bitsExposed; 
} 
 
/* 
 * Winnow::getNetBitsExposed 
 * 
 * Returns the net number of bits exposed (gross number - bits discarded) 
 */ 
unsigned int Winnow::getNetBitsExposed() { 
 return _netBitsExposed; 
} 
 
 
/* 
 * Winnow::numRemainingErrors 
 * 
 * Input:  BitBuffer containing the key to compare to the member keystring 
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 * Output: number of places where the two strings do not match 
 * 
 * This is only used for statistics collection and verification of algorithm 
 * effectiveness; it won't be used in practice. 
 */ 
unsigned int Winnow::numRemainingErrors(BitBuffer *otherBuffer) { 
 unsigned int counter=0; 
 
 for(unsigned int i=0; i<_keyString->getLength(); i++) { 
  if(otherBuffer->getBit(i) != _keyString->getBit(i)) 
   counter++; 
 } 
 
 return counter; 
} 
 
/* 
 * Winnow::printMatrix 
 * 
 * Used to display the parity check matrix, for debugging. 
 */ 
void Winnow::printMatrix() { 
 printf("Parity-Check matrix:\n"); 
 for(unsigned int i=0; i<_syndromeLength; i++) { 
  for(unsigned int j=0; j<_blockSize; j++) { 
   printf("%d ",_parityCheckMatrix[i][j]); 
  } 
  printf("\n"); 
 } 
 return; 
} 
 
/* 
 * BitBuffer wrappers 
 * 
 * These are accessor wrappers for determining and setting the seed used for 
 * the random permutation of the bits. 
 */ 
 
void Winnow::setSeedValue(unsigned int seed) { 
 _keyString->setSeed(seed); 
} 
 
unsigned int Winnow::getSeedValue() { 
 return _keyString->getSeed(); 
} 
 
 
double Winnow::setBlockSchedule(unsigned int pe) { 
 
 if(_setterLocked) { 
  printf("Winnow::setBlockSchedule -> You shouldn't be accessing 
this!\n"); 
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  return .01; 
 } 
 
 _setterLocked = true; 
 
 long double newRate; 
 long double bl = (long double)_numOfBlocks; 
 
 newRate = (bl-2*pe)/bl; 
 newRate = .5L*(1-pow(newRate,.125L)); 
 
 _blockSizeSchedule = new unsigned int[8]; 
 
 if(newRate <= 0.01) { 
  _blockSizeSchedule[0] = 1; 
  _blockSizeSchedule[1] = 0; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 1; 
  _blockSizeSchedule[4] = 0; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 1; 
  _blockSizeSchedule[7] = 2; 
 } 
 
 else if(newRate <= 0.02) { 
  _blockSizeSchedule[0] = 1; 
  _blockSizeSchedule[1] = 0; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 0; 
  _blockSizeSchedule[5] = 1; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.03) { 
  _blockSizeSchedule[0] = 1; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.04) { 
  _blockSizeSchedule[0] = 1; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
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  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.05) { 
  _blockSizeSchedule[0] = 1; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 1; 
  _blockSizeSchedule[4] = 0; 
  _blockSizeSchedule[5] = 1; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.06) { 
  _blockSizeSchedule[0] = 1; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 2; 
 } 
 
 else if(newRate <= 0.07) { 
  _blockSizeSchedule[0] = 2; 
  _blockSizeSchedule[1] = 0; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.08) { 
  _blockSizeSchedule[0] = 2; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.09) { 
  _blockSizeSchedule[0] = 2; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 1; 
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  _blockSizeSchedule[4] = 0; 
  _blockSizeSchedule[5] = 1; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.10) { 
  _blockSizeSchedule[0] = 2; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.11) { 
  _blockSizeSchedule[0] = 3; 
  _blockSizeSchedule[1] = 0; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.12) { 
  _blockSizeSchedule[0] = 3; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.13) { 
  _blockSizeSchedule[0] = 3; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 1; 
  _blockSizeSchedule[4] = 0; 
  _blockSizeSchedule[5] = 1; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.14) { 
  _blockSizeSchedule[0] = 3; 
  _blockSizeSchedule[1] = 1; 



102 

 

 

  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.15) { 
  _blockSizeSchedule[0] = 4; 
  _blockSizeSchedule[1] = 0; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.16) { 
  _blockSizeSchedule[0] = 4; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 1; 
  _blockSizeSchedule[4] = 0; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.17) { 
  _blockSizeSchedule[0] = 4; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.18) { 
  _blockSizeSchedule[0] = 5; 
  _blockSizeSchedule[1] = 0; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else if(newRate <= 0.19) { 
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  _blockSizeSchedule[0] = 5; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 0; 
  _blockSizeSchedule[3] = 1; 
  _blockSizeSchedule[4] = 0; 
  _blockSizeSchedule[5] = 1; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 1; 
 } 
 
 else { 
  _blockSizeSchedule[0] = 5; 
  _blockSizeSchedule[1] = 1; 
  _blockSizeSchedule[2] = 1; 
  _blockSizeSchedule[3] = 0; 
  _blockSizeSchedule[4] = 1; 
  _blockSizeSchedule[5] = 0; 
  _blockSizeSchedule[6] = 2; 
  _blockSizeSchedule[7] = 2; 
 } 
 
 _blockSizeSchedule[0]--; 
 
 return (double)newRate; 
} 
 
void Winnow::getBlockSizeSchedule(unsigned int *bss) { 
 
 bss[0] = _blockSizeSchedule[0]+1; 
 for(int i=1; i<8; i++) 
  bss[i] = _blockSizeSchedule[i]; 
 
 return; 
} 
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